

Medusa: A Proximity-Aware Multi-touch Tabletop

Michelle Annett 1,2
, Tovi Grossman

1
, Daniel Wigdor

3
,
 George Fitzmaurice

1

1
User Interface Group

Autodesk Research

{firstname.lastname}@autodesk.com

2
Department of Computing Science

University of Alberta

mkannett@ualberta.ca

3
Department of Computer Science

University of Toronto

dwigdor@dgp.toronto.edu

ABSTRACT
We present Medusa, a proximity-aware multi-touch tab-
letop. Medusa uses 138 inexpensive proximity sensors to:
detect a user’s presence and location, determine body and
arm locations, distinguish between the right and left arms,
and map touch point to specific users and specific hands.
Our tracking algorithms and hardware designs are de-
scribed. Exploring this unique design, we develop and re-
port on a collection of interactions enabled by Medusa in
support of multi-user collaborative design, specifically
within the context of Proxi-Sketch, a multi-user UI proto-
typing tool. We discuss design issues, system implementa-
tion, limitations, and generalizable concepts throughout the
paper.
ACM Classification: H5.2 Information interfaces and
presentation: Input, User Interfaces.
General terms: Design, Human Factors
Keywords: tabletop, context-aware, gestures, touch, bi-
manual, multi-touch, proxemics, proximity, hover
INTRODUCTION
Multi-touch tabletop displays, which combine large display
and input surfaces on a horizontal plane, offer opportunities
for new applications and interfaces. Advances in technolo-
gy have made such devices the focus of considerable re-
search [22] and have given rise to numerous prototype and
commercial platforms. Multi-touch tabletops offer numer-
ous potential benefits, such as the ability to support a more
“natural” user experience [36], and allow for casual and
collaborative interactions [25].
Despite these benefits, many tabletops still have several
limitations. In particular, the majority of touch-based tech-
nologies are only capable of sensing touch interaction on
the display surface. As a direct result, tabletop user inter-
faces cannot rely on a “tracking state” which is one of three
essential input states of traditional GUI’s [7]. Furthermore,
by limiting their sensing to touch, tabletop devices have no
inherent knowledge of where users are situated which users
are interacting, or the number of users (if any) that are pre-
sent. Given the clear relevance of tabletops to collaborative

environments, these can be real limitations, and indeed,
many research projects have developed software solutions
that provide tabletops with this additional information. For
example, a tabletop display may attempt to deduce a user’s
location based on the orientation and footprint of the user’s
touch points [8,32].
While software solutions are a worthwhile approach, there
are also new technologies that allow tabletop devices to
sense not only contact with a tabletop’s surface, but also
above and around the tabletop. For example, depth cameras
have enabled interactions between and around display de-
vices [35]. Similarly, the use of proximity sensors has ena-
bled new gestures above and around a device [19].
As these sensing technologies have only recently become
commercially available, little research has explored how
their additional input channels can be leveraged to augment
and improve multi-touch tabletops. We see the integration of
tabletop and proximity sensing technologies as opening a
range of possibilities to enhance existing multi-touch and
collaborative interactions, and enable new ones. In particular,
context-aware and proxemic interactions can be enabled
[2,29], and existing challenges, such as mapping touch points
to users, and users to locations, can be addressed.
Our work provides two primary contributions in this space.
First, we present an integrated hardware solution, Medusa,
which allows a traditional multi-touch tabletop to sense a
user around its perimeter, as well as the user’s interaction
above the surface. Medusa is a Microsoft Surface that has
been instrumented with 138 proximity sensors. These prox-
imity sensors enable the Surface to sense the users around
it, as well as the hands and arms above its display (Figure
1). Not only are these sensors inexpensive and simple to
configure, but also they enable an integrated

Figure 1: A user waving her arms above Medusa, a
proximity-aware multi-touch tabletop.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST ‘11,October 16-19, 2011, Santa Barbara, CA, USA.
Copyright © 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

hardware solution, without requiring any markers, cameras,
or other sensing devices external to the display platform
itself. Our second contribution is a thorough exploration of
the design space that results from the use of these additional
information channels. As Medusa has an awareness of users’
locations, it can for example, identify touch points by user,
and disambiguate between touches made with left or right
hands. Our exploration of new user interface paradigms and
interaction techniques is facilitated by the development of
Proxi-Sketch, a UI prototyping application.
RELATED WORK
In this section, we review previous efforts at sensing ges-
tures around touch devices, responding to user location, and
alternative sensing technologies.
Sensing Gestures around Touch Devices
There is a long line of research examining the use of ex-
plicit mid-air gestures, in particular, in VR research (we
refer the reader to two surveys [13,23]). Freehand gestures
have also been used as a means to interact with miniature
devices [15,20,26]. While such work has relevance to Me-
dusa, the focus of the present work is on the augmentation
of traditional 2D touch device interactions with additional
sensing channels, rather than on the development of re-
placement 3D gestures. Significant work, which relies on
detecting the hover of a stylus, has also been done. Vogel
provides a thorough review of this research [30], which we
omit due to the reliance on a tracked object.
Adding a Tracking State for Touch
In modern user interface parlance, hover has come to de-
scribe the tracking state of an input device, whether or not
that state is achieved by physically hovering over anything
[7]. Multiple projects have introduced a tracking state to a
touch device without actually detecting physical hover.
These include differentiation of posture of the touching
finger [4,10,11] through differentiation based on the num-
ber or choice of fingers [21], through the use of physical
proxies [32], through sensing the height of the hand above
the device while touching with a finger [24], and through
EMG-sensed differentiation of posture [3]. While relevant
to the current work, the ability to detect physical hover can
provide a broader range of capabilities than the straightfor-
ward addition of a tracking state.
Physical Hover Detection
The detection of physical hover has been achieved through
vision techniques, using either above-device cameras (as
with Smart’s DVIT device, (smart.com/dvit), and Lu-
cidTouch [33]), or beneath-surface cameras [16, 27]. Sens-
ing of induced capacitance has also been used to detect
hands above a device [24]. While these approaches can
extend the capabilities of touch devices by supporting in-air
gestures [16], the physical mounting locations limit the
interaction volume. To address this, Wilson and Benko
proposed the use of multiple depth-cameras in a LightSpace
[35]. As with the earlier approaches, the interaction volume
was limited to the viewing area of the cameras. By mount-
ing three rings of proximity sensors directly onto the table,
Medusa ensures that the table itself does not occlude the
sensors’ view of the surrounding area.

Responding to User Location
Medusa is an interactive tabletop able to detect, track, and
differentiate between multiple users. Previously, the Dia-
mondSpin project demonstrated the use of user differentia-
tion to augment interaction [25] by relying on capacitive
coupling to provide user-differentiation for each contact
[9]. While robust for the differentiation of users, user loca-
tion is based on an assumption of static positions of receiv-
er pads, and requires the user to remain in contact with their
pad while interacting with the device. Vision techniques
applied to touch input have demonstrated the ability to dis-
tinguish between contacts made with the right or left hand
[8], but have not provided a mechanism to label hands from
multiple users, cannot sense users before they touch the
display, nor sense orientation information for each contact.
Multiple projects have demonstrated promising interaction
techniques given user tracking, such as in public ambient
displays [29], and proxemic interactions [2]. Both of these
projected relied on the use of commercial motion trackers
to observe fiducial markers worn by the user. Multitoe pro-
vided user tracking, but relied on an instrumented floor [1].
Medusa builds on the interactions provided by these systems,
while contributing a commercially viable method for achiev-
ing user tracking. Also relevant to Medusa is the Range pro-
ject, which explored the use of proximity sensing of implicit
interactions [18]. While our focus is the enabling of explicit
interactions, this work has informed some of our designs.
Sensing Technologies
Three rings of proximity sensors provide Medusa’s addi-
tional information channels. Earlier projects have used the-
se devices to enhance sensing. In Hoverflow, an array of
proximity sensors enables the detection of ‘coarse gestures’
above a worn device [19]. Similarly, SideSight used two
arrays of comparable sensors, pointed outwards from the
sides of a mobile phone, to detect gestures made on the
surface on which the phone was resting [6].
Furthermore, Tanase et al. used an array of 12 proximity
sensors to coarsely detect the presence of users around a
tabletop [28]. Unlike Tanase et al.’s implementation, Me-
dusa has a much higher spatial resolution, is able to sense
user presence around and above a tabletop, and fully ex-
plores the design space surrounding proximity-aware multi-
touch tabletops.
Summary
While there have been a large number of projects that have
informed the design of Medusa, little to no work has previ-
ously examined how the information about users around a
device can be used in tandem with information about ges-
tures above and touching the device. Further, no device has
previously been able to sense the various user parameters
without additional external sensors. Finally, the previous
explorations have focused on explicit gestures that engage
the external sensors, rather than using the sensors to implicit-
ly enhance existing surface-constrained interactions.
HARDWARE IMPLEMENTATION
Medusa is an augmented Microsoft Surface multi-touch
tabletop, elevated to a height of 86 cm. To sense a user’s
body, arm, and hands, 138 low-cost, IR-based proximity

sensors are affixed to the top and side panels of the Surface.
A combination of Sharp 2Y0A21 long-range (10-80 cm)
and 2D120X short-range (4-30 cm) sensors are used.
The proximity sensors are arranged in three rings: an out-
ward ring, an outer ring, and an inner ring (Figure 2). Alt-
hough the sensors in our prototype protrude from the Sur-
face, in the future they could be embed directly into the
bezel or base of any multi-touch tabletop or display. The
sensors were connected to the Microsoft Surface via 18
Phidget Interface 8/8/8 Kits. No additional data acquisition
devices or hardware upgrades were added to the Surface.
The outward facing ring is composed of 34 long-range sen-
sors, spaced 3.3 cm apart, and mounted at the top of each
side of the table. Because the sensors point outwards, they
create a horizontal sensing plane that projects 80 cm from
the side panels of the Surface, along all sides. When a user
walks up to, or near the Surface, their legs engage the sens-
ing plane. Forty-six long-range sensors, spaced 3.3 cm
apart and pointed upwards, make up the outer ring of sen-
sors, creating a vertical sensing plane wrapped around the
perimeter of the tabletop. Long-range sensors were used to
allow users of various heights to interact with the system.
Fifty-eight short-range sensors, spaced 0.8 cm apart, are
located around the perimeter of the Surface’s touch area.
Similar to the outer ring, these sensors point upwards to
form an inner vertical sensing plane. Shorter-range sensors
were used to provide greater sensing resolution. When a
user reaches towards the touch area of the tabletop, their
arm first engages the outer and then inner sensing planes.
The three rings of sensors allow Medusa to track users,
arms and hands, and to identify which user and which hand
generated each touch event detected by the Surface.
SENSING
Multiple proximity sensors have been used in combination
before [6,28,31], but to our knowledge, not to the extent of
our 138-sensor implementation. As such, special attention

is paid to the aggregation, processing, and filtering of the
data. Furthermore, reconstructing body, arm, and hand po-
sitions is non-trivial. In particular, the sensing resolution is
magnitudes lower than what a 3D depth camera provides
[35]. Here, we describe the techniques we used to translate
the simple proximity data from of our three sensor rings into
the 3D location of users, arms, and hands.
Using C# and the Phidget SDK, the signals from each sen-
sor are sampled at 63 Hz and filtered using a median filter
with a window size of 17 (for the outward-facing sensors)
or 11 (for the upward facing sensors) to remove noise. Dif-
ferent window sizes were used because it is important to
have a steady body position (rather than a responsive, more
error-prone position), while responsiveness is required for
position of the arms. To remove any noise that results from
sporadically firing sensors, a uniform-weighted low pass
filter with a window size of eight is applied to the result of
the median filter.
To speed up processing and prevent the misidentification of
arms in touch events, Medusa processes the sensors using a
cascading logic approach. On each frame, the sensors in the
outward ring are processed. If engagement with sensors in
the outward-facing ring is detected, the sensors located in
the outer upper-facing ring along the same side of the table
are processed. If there is then a disruption in the outer ring,
only those sensors in the inner ring, which are located
along the same side, are processed. Using this approach
prevents unnecessary processing while also preventing us-
ers from interfering with the sensing of other users (e.g.,
reaching over to their side, reaching across them, etc.).
Body Tracking Algorithm
Medusa uses the sensors’ known physical locations and
reported depth values to determine each user’s body posi-
tion around the Surface. Medusa first looks at all of the
sensors in the outward ring to determine which ones are
firing. If groups of consecutive sensors that are firing, they
are placed into a ‘sensor chain’.
Once all firing sensors have been identified, each sensor
chain is analyzed. Medusa first discards all chains with a
length less than 2 and then computes a Gaussian weighted
average of each chain’s sensor position and proximity val-
ues. This weighted value is used as an estimate of the user’s
body position (Figure 3). The distances between each body
found in the current frame is compared to each previously
computed body position. Bodies are mapped to the closest
positions in the previous frames. If a new body is more than
50 cm from any previous body position, it is marked as a
new body. Body positions are smoothed using a uniform
low pass filter with a window size of 13. If a previously
detected body has not been updated for 500 ms then that
body is no longer considered present. Using this technique,
we can robustly track two people along each long side of
the table and one person along each short side of the table.
Arm Tracking
Similar to the body tracking method, Medusa looks at the
outer and inner ring of sensors to find chains of sensors that

Figure 2: Medusa’s sensors are arranged in three
rings. An outward-facing ring of 34 sensors is mount-
ed beneath the lip. Two upward facing rings atop the
table are made-up of 46 sensors (on the outer) and
58 sensors (on the inner).

are firing. Unlike the body tracking, it is possible to disrupt
only one sensor with the arm, so all chains are considered.
To find if an arm is present above the outer ring, a
weighted average of the positions of each sensor in the
chain is computed. Arms are matched across frames with
the closest previously detected arm. If the current arm posi-
tion is more than 20 cm from any previous arm, it is
marked as a new arm, and right/left is determined. Arm
position is smoothed using a low pass filter with a window
size of 13. If an arm position has not been matched or up-
dated for 500 ms, we then consider it as being removed.
To label an arm as right or left, each arm is compared to all
body positions that are on the same side of the Surface, and
is assigned to the closest one. If the arm is located to the right
of the assigned body, it is classified as the right arm, else, the
left. The side of the body an arm belongs to is always as-
signed when the outer ring of sensors is engaged.
The same heuristics are used to track arms above the inner
ring of sensors: chains of disrupting sensors are found, and
a weighted average of the sensor position is computed and
matched against previous arm positions. When a new arm
is identified above the inner ring, it is associated with the
closest arm position currently sensed above the outer ring,
and inherits the right/left arm classification.
When an arm engages both rings of sensors, the reported
depth values, along with their known positions, can be used
to provide a rough estimate of the horizontal and vertical
arm angles (Figure 3).
Mapping Touch Points to Users and Hands
To map the touch points detected by the Surface to a spe-
cific user and hand, Medusa considers the orientation of the
arms that are currently being tracked. For each arm that is
engaging both the inner and outer rings, Medusa computes
an ‘arm projection’, which is the vector that extends from
the 3D line segment between the arm’s estimated positions
above the inner and outer rings. When a new touch point is

sensed, Medusa determines the minimum distance that ex-
ists between the touch point and each of the arm projec-
tions. If the minimum distance to the closest projection is
less than 15 cm, the touch point is matched to that arm and
user. If no projection passes within that threshold, Medusa
determines which arm is engaging the inner ring closest to
the touch point. If two or more arms are within 20 cm of
the touch point (20 cm), Medusa matches the touch point
based on the minimum distance between the touch point
and the body positions of the users, and associates the
touch point with the arm of the user to which it is closest.
Tracking Accuracy
While we have not formally evaluated the tracking accura-
cy or robustness of Medusa, our initial experiences are
quite encouraging, although there are some problem cases
where contact points or arms are incorrectly tagged. In our
discussion section, we outline some of the limitations of
both our tracking heuristics and of the sensors themselves.
Tracking is certainly sufficiently robust to enable our ex-
ploration and implementation of the new interaction tech-
niques that are unique to Medusa’s enhanced sensing capa-
bilities. This exploration takes place within the context of
Proxi-Sketch, our UI layout application.
PROXI-SKETCH
Application Scope and Motivation
To explore the new types of interactions that our additional
sensing affords, Proxi-Sketch was created. Proxi-Sketch is
an application that enables users to create and edit proto-
types of graphical user interfaces (Figure 4), inspired by
desktop applications such as Balsamiq (Balsamiq.com).
This seemed like a reasonable application domain that
would provide us with a sandbox for exploring numerous
functions and features. Our contribution is not focused on
the application domain itself, but rather how Medusa’s
sensing information can improve multi-user, multi-touch
tabletop applications in general.

Figure 4. A user building a user interface prototype
using Proxi-Sketch, running on Medusa.

While Medusa has the ability to sense explicit freehand 3D
gestures, we focus instead on how implicit engagement of
the sensors can be used to augment traditional 2D interac-

Figure 3: Visualization of tracking output. The location
of the user’s body is represented by the blue paddle.
Right and left arm locations (with respect to the outer
ring) are represented by orange and purple circles, re-
spectively. The locations of the user’s arms within the
inner ring are represented by yellow and pink circles,
respectively. The orange and purple cones represent
the ‘arm projections’ of the user.

tions. We organize our discussion of Proxi-Sketch based on
the properties sensed by Medusa:

 User Position Tracking
 Bimanual Input Distinction
 Pre-Touch Functionality
 Touch + Depth Gestures
 User Differentiation

User Position Tracking
An important aspect of Medusa is that it can detect when
users are present, how far away they are from the table ,
and where around the table they are situated. In this section,
we discuss how we leverage this information.
User Presence and Representation
When no users are present, an attract application is dis-
played. As with any input device that is proximity- or con-
text-aware, it is important to convey to users that the sys-
tem recognizes their presence and behaviour [29]. We indi-
cate the identification of a user’s presence by displaying a
persistent visual representation of the user via a glowing
orb (Figure 5). When a user first enters the idle state (by
walking up to the tabletop), they will see a blurry, blue
glowing orb (which represents an unknown user). The loca-
tion of the orb moves with the user as they walk toward,
around, and away from the tabletop. If a user chooses to
move closer to the tabletop, their orb comes into focus and
invites the user to login. If the user exits the idle state (by
walking beyond sensing range), the orb disappears.
User Login/Logout
Users login to the system by touching the orb, rotating
through a carousel of user ID’s, and selecting their profile
picture (Figure 5). Once logged-in, the blue glowing orb
changes to a user-specific colour, displays the user’s name,
and minimizes to the corner of the screen, allowing imme-
diate visual identification by all users without being intru-
sive or distracting. If the user moves to another side of the
tabletop, the orb moves with them and becomes anchored
in a corner of the new side. If the user walks away from the
table at any time, the orb changes to gray and then gradually
fade out, visualizing a timeout until the user is logged-out.
Once a user has logged-in, the orb acts as a personal ges-
ture dashboard for context-specific gestures. One of the
subtle benefits of Medusa is that after logging-in, a user’s
gesture dashboard remains associated with them, even as
they walk around the table. There are five gestures that are
supported by the dashboard: logout, open file, save file,
group, and do not disturb. The logout gesture is a 3 finger
tap, and allows users to manually logout, instead of auto-
matically logging out by walking away. Opening and sav-
ing files is accomplished with a swipe of a finger to the left
and right, respectively. Saved content is associated with the
user’s profile, and the open gesture evokes a carousel of
documents associated with their account. The remaining
gestures are discussed in the sections that follow.

Figure 5: Initially, each user is represented by a blur-
ry, glowing blue orb (Top). After moving closer to the
tabletop, the orb comes into focus and encourages
the user to login (Center). If a user taps on their orb,
it will bring up a rotating carousel of available user
accounts (Bottom).

Different Sides / Different Functions
Since Medusa provides knowledge pertaining to a users’
location, Proxi-Sketch can assign specific modes, tools, or
functionalities to different sides of the tabletop. To explore
this possibility, we assigned different sides of the tabletop
to different fidelities of the current prototype. By default,
prototypes are rendered in a ‘sketchy’ style. If the user
wishes to see their prototype from a fresh point of view, in
a higher fidelity, they can walk over to an adjacent side of
the tabletop (Figure 6). Not only will the visual style of the
interface change, but also the canvas appropriately reorients
to face the user’s new location. When a user moves to an-
other adjacent side of the tabletop, the interface switches
back to the ‘sketchy’ style and reorient to face the user.
Standing at the Corner
When a user stands at one of the corners of the tabletop, the
presence of the user’s body is identified but not their arms,
arm movements, or touch points. The corners of a tabletop
are perfect locations for users who have restricted permis-
sions but are allowed to observe the collaboration process.
Within Proxi-Sketch, blue orbs appear for users who are
standing at the corners of the Surface to indicate that they
are recognized, but are not given the opportunity to login or
manipulate any content.

Figure 6: By default, a low-fidelity rendering of each
UI component is generated (Top). Once a user walks
to an adjacent side of the table, a high fidelity render-
ing of each component becomes visible (Bottom).

Bimanual Input Distinction
While bimanual input is commonly used in tabletop appli-
cations, Medusa is able to distinguish between the user’s
left and right hands. This distinction is particularly im-
portant, as interactions should support a non-symmetric
division of labour [14]. This section describes the interac-
tions we explored to leverage this information.
Content Creation and Removal
We use the notion of dominant and non-dominant hands to
assign appropriate functionality for adding and removing
content. Content is added by tapping on the canvas with the
dominant hand. A marker coloured with the identified user’s
orb colour appears on the canvas. When touched, a hierar-
chal radial menu opens, oriented towards the user. This menu
adds UI components, such as browser windows, media play-
ers, and scroll bars to the canvas.
If a user wishes to clear the canvas, she user can touch the
canvas with their non-dominant hand, displaying a ‘clear
canvas’ icon, oriented to that user. If the clear icon is
touched, all user interface components are removed from
the canvas. Assigning removal to the non-dominant hand
reduces the risk of users accidentally removing content.
Translation, Rotation, Scaling
On a multi-touch tabletop, it can be difficult to perform
controlled manipulations, because a single gesture typically
activates rotation, scale, and translation all at the same
time. Proxi-Sketch addresses this problem by taking ad-
vantage of hand identification. To translate a component,
the user can touch the component with one finger and drag
it. If a user wishes to rotate the component, they can touch
the component with two fingers from the same hand. If a
user wishes to scale a component, the user touches it with

one finger from each hand. This differentiation allows for
increased precision through transform isolation.
Manipulations with Groups of Content
Proxi-Sketch uses bimanual input distinction to quickly
differentiate manipulation gestures as applying to the whole
group, or to an individual item.
If a user wishes to manipulate a whole group of compo-
nents, they can do so by touching any component in the
group with their non-dominant hand. Conversely, if the
user wishes to manipulate only a single component within a
group, thus leaving the rest of the group in place, they
touch the desired component with their dominant hand. All
of the components belonging to the group become high-
lighted (to ensure that the user knows that the component is
part of a group), but the desired component is the only one
that will be manipulated. Our design rationale when mak-
ing this bimanual separation is in keeping with research in
bimanual interaction, which advocates assigning coarser
actions (moving all the components in a whole) to the non-
dominant hand [14].
Content is grouped by tapping one finger on the gesture
dashboard, enabling ‘group mode’. Once in this mode, any
components touched by the user become highlighted with
the user’s orb colour. After all desired components are se-
lected, the user can again tap the dashboard with one finger
to create the group and exit the mode.
Pre-Touch Functionality
In addition to sensing the proxemic state of users, Medusa
can also sense the proxemic states of a user’s hands. In
particular, Medusa knows if a hand has crossed the bezel or
display area, but not come into contact with the display
area. This allows us to explore pre-touch functionality, dis-
cussed below.
Global Gesture Guide
Similar to many other multi-touch tabletop applications,
there are a number of gestures that can be performed within
Proxi-Sketch. Previous efforts have used on-demand guides
to illustrate available gestures [12]. An open problem has
been how to display this guide without having to reserve a
“help” gesture. Medusa provides an obvious mechanism:
guides are displayed when the user’s hand hovers over the
table, demonstrating hesitation. A global gesture guide
(Figure 7) is shown when the user’s hand hovers over the
bezel of the table. We chose this interaction as it implicitly
indicates that the user intends to interact with the system,
but may be unsure how to proceed. The guide remains an-
chored near the user, in the center of the screen, until the
user removes their arm or reaches towards the touch area.
Dashboard Gesture Guide
Similar to the global gesture guide, each user has an on-
demand, gesture dashboard guide available (Figure 8). The
guide becomes visible when the user’s hand hovers above
their orb, and disappears whenever the user touches their
orb or moves their hand away. This extends the notion of
traditional gesture guides, allowing users to view context-
specific gestures.

Figure 7: Global Gesture Guide. This guide appears
whenever a user’s hand dwells over the outer ring of
sensors. It assists users in remembering which ges-
tures are permissible in Proxi-Sketch.

Figure 8: Dashboard Gesture Guide. This guide illus-
trates gestures that can be performed on an orb. It
appears when a user’s hand dwells over their orb.

Just-in-Time Widgets
Pre-touch functionality can also be combined with bimanu-
al input distinction. Similar to the addition and removal of
canvas content, the actions required to delete or edit a spe-
cific user interface components have been divided bimanu-
ally. If users wish to edit the colour, text, or other proper-
ties of a specific component, they can hover their dominant
hand above it, thus causing a coloured marker to appear
(Figure 9). This type of “just-in-time” widget is made pos-
sible by our 3D arm location sensing. Once touched, a radi-
al marking menu displays available options (Figure 9).
The marking menu is located such that it is not occluded by
the user’s arm, is oriented towards the user, and its options
are located in a convenient position for the dominant hand
to access. The selection of an element in this marking menu
causes a dialog to appear, allowing the user to make their
desired modifications.
If a user wishes to remove a component from the canvas,
they hover their non-dominant hand above the desired
component. This results in a red ‘X’ icon being placed on
the component’s left side (Figure 10). Touching the ‘X’
icon deletes the component.

Figure 9: When the right arm is moved over a com-
ponent, a marker appears below the hand. (Top).
Touching this marker displays a component-specific
marking menu (Bottom).

Figure 10: Moving one’s left arm over a component
brings a red ‘X’ icon into view. Touching this ‘X’ icon
deletes the component from the canvas.

These just-in-time widgets allow users to preview possible
actions with specific application components, and keep the
working area clear of user interface clutter.
Touch + Depth Gestures
An important feature when producing UI prototypes is the
ability to change the z-order of components of the UI. We
developed a new type of gesture that Medusa enables,
which combines touch and 3D sensing to control item ar-
rangement. To send a component back in z, behind all other
components, the user touches the component and moves
their arm/elbow towards the Surface. To bring a component
to the front, the user can touch the component and pick it
up (i.e., move their arm upwards, away from the Surface).
This new method of arranging components enables users to
employ a direct manipulation metaphor to perform a task
that is often obfuscated by icons or hidden menus.

User Differentiation
Issues in sharing and territoriality in tabletop collaboration
have long been studied [22]. As Medusa provides infor-
mation regarding user location and touch identity, new el-
ements of facilitated collaboration are possible.
Content Control
In multi-user scenarios, control of content on a multi-touch
tabletop has been a long-standing problem, especially when
a system is uncertain who is interacting with content [22].
If a user walks up to the tabletop and does not login, all of
their interactions with the tabletop are automatically
blocked. This is only possible because Medusa associates
touch points to users. This allows casual observers to point
to content, without accidently changing it.
When multiple users are logged in, Proxi-Sketch makes use
of its user-identification to assign ownership of components
to users. To prevent users from accessing content from an-
other user or interfering with someone else’s work, Proxi-
Sketch employs a ‘one component per user, one user per
component’ rule. With this rule, each user has control over
one component at a time, and at most one user can own
each component at a time. Each ‘owned’ component is
highlighted with its owner’s colour and cannot be manipu-
lated, edited, or deleted by anyone but the owner.
To take control of a component, a user simply touches it.
As soon as a user begins working with a new component,
they automatically give up control of their previously
owned component. If a user wishes to give up control of a
component, they can take a small step away from the Sur-
face. The user’s orb colour changes to grey and the compo-
nent is free for other users to manipulate.
This approach to content control does not rely on explicit
interaction with the tabletop, but rather uses a subtle and
intuitive interaction to manage ownership. While devices
such as the DiamondTouch could enforce a similar owner-
ship scheme, the identity of the owners would not be robust
to movement around the table, nor could a step back from
the table be sensed to cede control [9].
Do Not Disturb
Brignull and Rogers identified the Honeypot Effect of digi-
tal surfaces, which has been amply confirmed by the au-
thors’ own experiences. It is quite common when working
with a multi-touch tabletop to be interrupted frequently, or
bothered by strangers or coworkers who are curious about
what the surface is, want to know what is being worked on,
and even start touching the surface without invitation [5].
As Medusa is able to identify when users are approaching,
would-be users can now be discouraged from interacting
with the Surface by enacting a new table mode: Do Not
Disturb (DND), shown in Figure 11.
DND provides users who are currently interacting with the
system with a method of discouraging others from ap-
proaching, without having to personally acknowledge them
or be disrupted. A user working with Proxi-Sketch can
evoke DND mode by tapping two fingers on their orb.

Once in this mode, any potential user who walks near the
tabletop is presented with a bright red ‘prohibited’ glowing
orb (Figure 11). If seen from a distance, this red orb subtly
but kindly informs any passersby or potential users that the
individuals currently using the tabletop do not wish to be
disturbed. If an uninvited user moves closer to the Surface,
their orb will not shrink, nor will it let them login or touch
any part of the canvas. Once users are ready to allow others
to collaborate, they can tap two fingers on their orb to re-
turn the tabletop back to its normal state.

Figure 11: If the tabletop has been placed in the ‘Do
Not Disturb’ mode, all logged out and potential users
will be greeted with a ‘prohibited’ glowing red orb,
encouraging them to walk away from the table and
not bother those currently engaging with it.

Summary
Taken as a whole, Proxi-Sketch builds atop the sensing
capabilities included in Medusa to provide a set of unique
interactions. User position sensing is used to encourage (or
discourage) use of the table, and to provide visual feedback
of detected presence. Bimanual input distinction has been
used to reduce the likelihood and cost of errors, and to pro-
vide improved precision for direct manipulation. Pre-touch
functionality provides a new state for interaction, which we
have used to explore a solution to gesture learning and to
enable just-in-time widgets. Finally, we have demonstrated
the utility of user and touch identification to enhance col-
laboration, and to provide mechanisms, both implicit and
explicit, to manage content control and privacy. This has
been accomplished while maintaining a viewpoint that Me-
dusa’s additional sensing is meant to enhance the touch
sensing of the underlying Microsoft Surface, rather than to
supplant or replace touch-based interaction.
DISCUSSION
We have presented Medusa, a novel system that uses prox-
imity sensors to capture a rich set of user-proximity infor-
mation, and Proxi-Sketch. In this section, we discuss other
sensing solutions, the limitations of proximity sensors, and
the generalizability of our interaction techniques.
Sensing: Proximity Sensors and Depth Cameras
The use of proximity sensors has a number of benefits. As
proximity sensors are small, it would be plausible to inte-
grate them into the bezels of touch displays, similar to their
current usage in mobile phones. The sensors are also inex-

pensive and do not require any calibration. Most important-
ly, no external cameras or tracking markers are required,
making Medusa a wholly integrated hardware solution.
The data we receive is of a much lower fidelity than what
could be obtained from other sensing possibilities. For ex-
ample, using a Microsoft Kinect depth camera could poten-
tially provide full skeletal tracking, allowing a richer set of
body-based gestures and techniques to be explored. How-
ever, it is unlikely that a single integrated Kinect device
could replace the aggregate effect of our distributed sensing
solution. Most likely, a Kinect device would need to be
mounted externally, such as on the ceiling [35]. Associated
technical challenges would thus include occlusions by us-
ers, possible interference between the IR emitters and re-
ceivers in the depth cameras and Surface devices, and the
need to recalibrate each time the Surface is moved. Our
solution could be embedded into existing hardware, over-
comes issues of occlusion, and requires no calibration.
Another option would be the use of IR cameras mounted
below the surface of the display, as demonstrated in Sec-
ondLight [16,17]. This however would only provide a re-
stricted field of view, in comparison to the full proximity
information our implementation enabled. Medusa is able to
sense the location of users around the Surface, identify if
the right or left hand is present, and detect which user each
arm/hand belongs to. This information is also used to match
touch points to specific users. Behind surface cameras may
have knowledge of the position, orientation, and depth of
the hand, but none of the additional user-based information
is available for use. It is also important to note that our ap-
proach can be used to retrofit all existing tabletop systems
(e.g., capacitive, resistive, FTIR, diffuse illumination, etc.),
whereas many current and future multi-touch tabletops will
not have a form factor that could support a beneath-surface
camera and switching diffuser.
Limitations of Proximity Sensors
There are some limitations of the sensors that should be
highlighted. To our surprise, there was little issue with sen-
sors interfering with one another. However, we initially
found that sensors would frequently report false positives,
(ghost objects), due to IR reflections from reflective mate-
rial in our lab (e.g. bicycles, exposed ceiling pipes). Once
diagnosed, the problem was addressed using strategically
placed mirrors, to ensure light was not reflected back to-
wards the sensors. More advanced filtering may reduce or
alleviate this issue.
We demonstrated that with some simple tracking algo-
rithms, our arrangement of proximity sensors could track
users, arms, hand locations, arm orientations, and could
associated arm and touch points to users, as well as identify
hands. Certain tracking information was accurate (such as
detecting where users arms engaged the sensing planes),
whereas other information was more coarse (such as esti-
mating the 3-D location of a user’s hand when hovering
above the input area). While the tracking performance was
robust enough to explore the interaction design space, there

were some limitations. For example, if two users cross
paths, our body tracking algorithm could mislabel users
once they separate, or if two users’ hands hover over the
exact same area, and only one hand touches the Surface, the
touch point may be associated with the wrong user.
Generalization of Interaction Techniques
While Medusa’s hardware arrangement and tracking algo-
rithms constitute a contribution of this work, many of the
interaction techniques presented would also be suitable for
devices built using other sensing modalities. In particular, a
technical implementation using Kinect devices would be
able to utilize all of the interaction techniques we have ex-
plored. An implementation using below-surface cameras
would be able to utilize only those techniques that do not
require knowledge of users or their locations – such as the
hover-based, just-in-time widgets.
FUTURE WORK
Our work opens up new opportunities for future research,
with respect to the tracking and the interaction designs.
The tracking algorithms we used were simple, but suffi-
cient in most cases. Future work could formally evaluate
the accuracy of our baseline sensing solution and potential-
ly introduce more advanced techniques to match arms and
touch points to users. For example, when matching touch
points to arms, one could consider the timing correspond-
ence between when the arm entered the touch area, and
then the occurrence of the touch. Future work could also
look at extending the tracking algorithms to support tab-
letops with different physical properties (i.e., height, num-
ber of sides, length of sides, etc.). More attention could also
be given to potential sensing inaccuracies in the interaction
design. Important or frequent system features should be
mapped to gestures that have the highest accuracy rates,
and error recovery techniques should be provided when
misclassifications occur.
With respect to our design exploration, there are a number
of interesting ideas that could be explored further. We in-
troduced some new gestures enabled by Medusa, but there
are many more possibilities. An implementation using a
Kinect device may support new types of gestures and tech-
niques that we did not explore. For example, full-skeletal
tracking could support the detection of body postures for
application control, such as leaning in and out to control
zoom levels, or showing private information when other
users turn their backs on the table.
New types of widgets could be explored using the sensing
information. For example, widgets could become fatigue-
aware, as the system could measure the amount of reaching
a user was performing. Like previous explorations with the
pen, widgets could also become occlusion-aware, based on
the position of the user’s hand and angle of their arm [30].
Finally, there is a clear need to explore affordances and
feedback to help users understand the parameters being
sensed, and how to manipulate them, similar to earlier ex-
plorations with direct touch input [34].

REFERENCES
1. Augsten, T., Kaefer, K., Meusel, R., Fetzer, C., Kanitz,

D., Stoff, T., Becker, T., Holz, C., and Baudisch, P.
Multitoe: high-precision interaction with back-projected
floors based on high-resolution multi-touch input. UIST
‘10, 209-218.

2. Ballendat, T., Marquardt, N., and Greenberg, S. Proxe-
mic interaction: Designing for a proximity and orienta-
tion-aware environment. ITS ‘10, 121-130.

3. Benko, H., Saponas, T.S., Morris, D., and Tan, D. En-
hancing input on and above the interactive surface with
muscle sensing. ITS ’09, 93-100.

4. Benko, H., Wilson, A.D., and Baudisch, P. Precise se-
lection techniques for multi-touch screens. CHI ‘06,
1263-1272.

5. Brignull, H. and Rogers, Y. Enticing people to interact
with large public displays in public spaces. INTERACT
‘03, 17-24.

6. Butler, A., Izadi, S., and Hodges, S. SideSight: multi-
touch interaction around small devices. UIST ‘08, 201-
204.

7. Buxton, W. A three-state model of graphical input. IFIP
TC13 ‘90, 449-456.

8. Dang, C.T., Straud, M., and Andre, E. Hand distinction
for multi-touch tabletop interaction. ITS ‘09, 101-108.

9. Dietz, P. and Leigh, D. DiamondTouch: a multi-user
touch technology. UIST ‘01, 219-226.

10. Esenther, A. and Ryall, K. Fluid DTMouse: better
mouse support for touch-based interactions. AVI ‘06,
112-115.

11. Forlines, C. and Shen, C. DTLens: Multi-user tabletop
spatial data exploration. UIST ‘05, 119-122.

12. Freeman, D., Benko, H., Morris, M.R., and Wigdor, D.
Shadow Guides: Visualizations for In-Situ Learning of
Multi-Touch and Whole-Hand Gestures. ITS ‘09, 165-
172.

13. Grossman, T. and Wigdor, D. Going Deeper: A Taxon-
omy of 3-D on the Tabletop. ITS ‘07, 137-144.

14. Guiard, Y. Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a mod-
el. Journal of Motor Behavior, 1987, 9(4), pp. 486-517.

15. Harrison, C. and Hudson, S.E. Abracadabra: Wireless,
High-Precision, and Unpowered Finger Input for Very
Small Mobile Devices. UIST ‘09, 121-124.

16. Hilliges, O., Izadi, S., Wilson, A.D., Hodges, S., Gar-
cia-Mendoza, A., and Butz, A. Interactions in the air:
adding further depth to interactive tabletops. UIST ‘09,
139-148.

17. Izadi, S., Hodges, S., Taylor, S., Rosenfeld, D., Villar,
N., Butler, A., and Westhues, J. Going Beyond the Dis-
play: A Surface Technology with an Electronically
Switchable Diffuser. UIST ’08, 268-278.

18. Ju, W., Lee, B.A., and Klemmer, S.R. Range: exploring
implicit interaction through electronic whiteboard de-
sign. CSCW ‘08, 17-26.

19. Kratz, S. and Rohs, M. HoverFlow: expanding the de-
sign space of around-device interaction. MobileHCI
‘09, 1-8.

20. Loclair, C., Gustafson, S., and Baudisch, P. Pinch-
Watch: A Wearable Device for One-Handed Microin-
teractions. MobileHCI ‘10.

21. Matejka, J., Grossman, T., Lo, J., and Fitzmaurice, G.
The design and evaluation of multi-finger mouse emula-
tion techniques. CHI ‘09, 1073-1082.

22. Mueller-Tomfelde, C. Tabletops - Horizontal Interac-
tive Displays. Springer. ISBN: 978-1-84996-112-7.

23. Pierce, J. Expanding the Interaction Lexicon for 3D
Graphics. Ph.D. Thesis, Carnegie Mellon University,
2001.

24. Rekimoto, J. SmartSkin: An Infrastructure for Freehand
Manipulation on Interactive Surfaces. CHI ‘02, 113-
120.

25. Shen, C., Vernier, F.D., Forliens, C., and Ringel M.
DiamondSpin: an extensible toolkit for around-the-table
interaction. CHI ‘04, 167-174.

26. Starner, T., Auzier, J., Ashbrook, D., and Gandy, M.
The gesture pendant: A self-illuminating, wearable, in-
frared computer vision system for home automation
control and medical monitoring. ISWC ‘00, 87-94.

27. Takeoka, Y., Miyaki, T., and Rekimoto, J. Z-touch: an
infrastructure for 3D gesture interaction in the proximi-
ty of tabletop surfaces. UIST ‘10, 91-94.

28. Tanase, C.A, Vatavu, R.D., Pentiuc, S.G., and Graur, A.
Detecting and Tracking Multiple Users in the Proximity
of Interactive Tabletops. Advances in Electrical and
Computer Engineering, 2010, 61-64.

29. Vogel, D. and Balakrishnan, R. Interactive public ambi-
ent displays: transitioning from implicit to explicit, pub-
lic to personal, interaction with multiple users. UIST
‘04, 137-146.

30. Vogel, D. Direct Pen Input and Hand Occlusion. PhD.
Thesis, University of Toronto, 2010.

31. Walther-Franks, B. Schwarten, L., Teichert, J., Krause,
M., and Herrlich, M. User detection for a multi-touch
table via proximity sensors. ITS ‘08 Posters.

32. Wang, F., Cao, X., Ren, X., and Irani, P. Detecting and
Leveraging Finger Orientation for Interaction with Di-
rect-Touch Surfaces. UIST ’09, 23-32.

33. Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and
Shen, C. LucidTouch: a see-through mobile device.
UIST ‘07, 269-278.

34. Wigdor, D., Williams, S., Cronin, M., Levy, R., White,
K., Mazeev, M., and Benko, H. Ripples: utilizing per-
contact visualizations to improve user interaction with
touch displays. UIST ‘09, 3-12.

35. Wilson, A.D. and Benko, H. Combining multiple depth
cameras and projectors for interactions on, above and
between surfaces. UIST ‘10, 273-282.

36. Wilson, A.D., Izadi, S., Hilliges, O., Garcia-Mendoza,
A., and Kirk, D. Bringing physics to the surface. UIST
‘08, 67-76.

