

CommunityCommands:
Command Recommendations for Software Applications

Justin Matejka1, Wei Li2, Tovi Grossman1, George Fitzmaurice1
Autodesk Research

210 King St. East, Toronto, Ontario, Canada, M5A 1J7
1{firstname.lastname}@autodesk.com, 2{firstname2.lastname}@autodesk.com

ABSTRACT
We explore the use of modern recommender system tech-
nology to address the problem of learning software applica-
tions. Before describing our new command recommender
system, we first define relevant design considerations. We
then discuss a 3 month user study we conducted with pro-
fessional users to evaluate our algorithms which generated
customized recommendations for each user. Analysis
shows that our item-based collaborative filtering algorithm
generates 2.1 times as many good suggestions as existing
techniques. In addition we present a prototype user inter-
face to ambiently present command recommendations to
users, which has received promising initial user feedback.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
General terms: Design, Human Factors.
INTRODUCTION
Many of today’s programs have not hundreds, but thou-
sands of commands for a user to become aware of and learn
[18]. In each release, more commands might be added, and
without explicit effort on the part of the user to learn about
new functionality, they are left untouched. For example, in
Autodesk's AutoCAD, the number of commands has being
growing linearly over time. And even with the thousands of
commands available in AutoCAD, the largest group of us-
ers only use between 31 and 40 of them (Figure 1).
An inherent challenge with such systems is a user’s aware-
ness [14, 39] of the functionality which is relevant to their
specific goals and needs. Awareness of functionality is not
only important for learning how to accomplish new tasks,
but also learning how to better accomplish existing tasks.
In a potential “best case scenario”, the user works with an
expert next to them, who can recommend commands when
appropriate.
While previous HCI literature has looked at intelligent on-
line agents, most of this work is focused on predicting what
current state a user is in, if they require assistance, and how

to overcome problems [4, 8, 9, 15, 17, 20, 31]. To our
knowledge, there are few examples of systems specifically
focused on recommending new commands to users [24,
25]. Furthermore, such work has never been thoroughly
implemented or evaluated, and has important limitations.
Systems which recommend content to users, known as “re-
commender systems” are very popular today in other do-
mains. Some of the most popular movie, shopping, and
music websites provide users with personalized recommen-
dations [23, 29, 34, 36], and research in improving recom-
mendation algorithms is an active field of research [2]. In
this paper we introduce and investigate the application of
modern recommender system algorithms to address the
command awareness problem in software applications.

Figure 1. Histogram of the number of commands used by
AutoCAD users. The largest group of users only use be-
tween 31 and 40 commands.

Our new system, CommunityCommands, collects usage
data from a software system’s user community, and applies
recommender system algorithms to generate personalized
command recommendations to each user. With Communi-
tyCommands we hope to expose users to commands they
are not currently familiar with that will help them use the
software more effectively. The recommended commands
are displayed in a peripheral tool palette within the user
interface that the user to refer to when convenient. Thus,
the system is much more ambient in nature compared to
online agents such as “Clippy” or even simple techniques
like “Tip of the Day”. After discussing implementation
details, we describe a 3 month evaluation of our recom-
mender system algorithms, conducted with real users. Our
new algorithms provided significantly improved recom-
mendations in comparison to existing approaches.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
UIST’09, October 4-7, 2009, Victoria, B.C., Canada.
Copyright © 2009 ACM 978-1-60558-745-5/09/10 . . . $10.00.

193

RELATED WORK
Adaptive and Intelligent User Interfaces
Previous research has focused on adapting and optimizing
the interface to the current user and context [4, 13, 29, 31],
and inferring possible operations based on the user's beha-
vior [20]. The domain knowledge base of such systems is
often pre-designed and self-contained, and as such requires
a large effort to build and maintain. With Community-
Commands, the knowledge base is acquired automatically
from a large user community and evolves over time.
Other intelligent user interfaces are designed to observe and
learn from users' actions, and accomplish personalized
tasks. Examples include predicting the user's next com-
mand [8], automatically completing forms [15], maintain-
ing calendars and emails [9, 17, 38], and assisting users in
word processing tasks [26]. Most personal assistance pro-
grams analyze repetitive user behaviors, and automate the
repetitions; in contrast, our system suggests useful com-
mands that users usually have never used.
Notifications and Interuptability
Previous research [6, 7, 27] has demonstrated the harmful
effects that notifications can have on a user's task perfor-
mance. To compensate, there is a large body of work on
determining when and how to best interrupt a user [12].
However this is a problem which remains open. Communi-
tyCommands uses an ambient display, where the user can
get the information when they are ready, thus avoiding the
problems associated with interrupting the user's work flow.
Recommender Systems
Recommender systems have become an important approach
to help users deal with information overload and provide
personalized suggestions [16, 34, 37], and have been suc-
cessfully applied in both industry and academia. Recom-
mender systems support users by identifying interesting
products and services, when the number and diversity of
choices outstrips the user's capability of making good deci-
sions. One of the most promising recommending technolo-
gies is collaborative filtering [16, 37]. Essentially a nearest-
neighbor method is applied to a user's ratings, and provides
the user with recommendations based on how her likes and
dislikes relate to a large user community. Examples of such
applications include recommending movies [30], news
[34], books [23, 36], music [3], research papers [29], and
school courses [10, 19]. However, research has shown that
users may be reluctant to provide explicit ratings [5], and
so our research considers an implicit rating system for
software commands.
Recommending Commands
Little research has been conducted to help users learn and
explore a complicated software package using a recom-
mender system. Typical approaches to proactively intro-
ducing functionality to a user include "Tip of the day", and
“Did you know” [32], but these are often irrelevant to the
user and are presented in a decontextualized way [11].
The OWL System [24, 25] is one of the few systems we
have identified as going beyond these simple solutions. The

system, which is meant to run within an organization, com-
pares a user’s command usage to the average usages across
the organization. The system would then make a recom-
mendation if a command is being under-utilized or over-
utilized by an individual in comparison to the group. This
algorithm produces recommendations based on the assump-
tion that all users in the community should share the same
command usage distribution. It remains arguable whether
this is a safe assumption to make, even within an organiza-
tion, and the OWL system was never fully implemented or
evaluated. But across an entire user community, this as-
sumption is unlikely to hold. Users have different tasks,
goals, and preferences, and so their recommendations
should be personalized [31]. The system which Linton de-
scribed is the exact type of system which recommender
systems were developed to improve upon. Community-
Commands uses collaborative filtering to recommend the
most relevant commands for each individual user.
DESIGN CONSIDERATIONS
There are a number of important design goals to consider
when developing a command recommendation system.
User Interface Considerations
Unobtrusive. The interface should stay out of the user's
way. We avoid a system that pops-up or forces the user to
respond to the recommendation before continuing to work,
since this type of system could be frustrating [12, 42].
In Context. The system should provide the recommenda-
tions within the application [22]. This way a recommenda-
tion can be viewed and tested with minimal switching cost.
Minimal Cost for Poor Suggestions. The interface should
make the task of dealing with poor suggestions, if they do
occur, lightweight to minimize frustration, allowing the
user to spend more time looking at the good suggestions.
Self Paced. The user should be able to act on the recom-
mendations when it is convenient for them.
Recommender System Considerations
Novel Recommendations. The recommendations should be
commands that the user is unfamiliar with. This is in con-
trast to Linton’s work, where recommendations were also
made to increase or decrease existing command usages.
Useful Recommendations. The recommended commands
also need to be useful for the user. This could mean that the
command is useful immediately, or useful at some point in
the future given the type of work the user does.
The combination of novel and useful recommendations
leads to a two-dimensional space (Figure 2).

Figure 2. Map of Good, Poor, and Unnecessary Recom-
mendations.

194

We consider a good recommendation to be a command that
is both useful and novel to the user. A poor recommenda-
tion is a command that is not useful to the user. An unne-
cessary recommendation is a command which is useful to
the user, but the user was already familiar with. Unneces-
sary recommendations can actually be helpful in improving
the user's confidence in the system [29], but this is very
dependent on the user's expectations. If the expectation is
that the system will be suggesting "new" commands which
may be useful, commands with which the user is already
familiar may be seen as poor suggestions.
Global and Opportunistic Suggestions. The system should
be able to provide global suggestions, based on the user’s
entire command history. However, the system could also
have some knowledge about what the user is doing at the
current moment so it is able to highlight suggestions which
may be particularly relevant in the current context. Our
work focuses mostly on global suggestions, but we will
also discuss issues with opportunistic suggestions.
Support Different User Communities. The recommender
system should be able to base its recommendations on dif-
ferent collections of users. Users may want to see recom-
mendations generated from known expert users, a group of
co-workers, or the entire user community of the software.
COMMUNITYCOMMANDS
We now describe CommunityCommands, a new system
that provides personalized command recommendations
using collaborative filtering algorithms. The general idea is
to first compare a user’s command frequencies to the entire
user population. Our system then generates a top 10 list
(although the list size could vary) of recommendations for
that user. This top 10 list is presented in an ambient win-
dow within the user interface that the user can refer to
when convenient (Figure 3).

Figure 3. CommunityCommands system overview.

Target Application
CommunityCommands is implemented within AutoCAD, a
widely used architecture and design software application,
made by Autodesk. We felt AutoCAD would be an excel-
lent software package to work with, since it not only has
thousands of commands, but also numerous domains of
usages. While our work is implemented within AutoCAD,
the concepts map to any software where command aware-
ness may be an issue, and its usage varies across users.

Command Database
CommunityCommands requires usage data for its users to
provide personalized commands. In AutoCAD, command
usage histories are collected using a Customer Involvement
Program (CIP). The data set we obtained is composed of 40
million {User, Command, Time} tuples collected from
16,000 AutoCAD users over a period of 6 months.
The “Ratings”
Typical recommender systems depend on a rating system
for the items which it recommends. For example, a recom-
mender system for movies may base its recommendations
on the number of stars that user’s have assigned to various
titles. These ratings can be used to find similar users, iden-
tify similar items, and ultimately, make recommendations
based on what it predicts would be highly rated by a user.
Unfortunately, in our domain, no such explicit rating sys-
tem exists. Instead, we implicitly base a user’s “rating” for
any command on the frequency for which that command is
used. Our collaborative filtering algorithm then predicts
how the user would “rate” the commands which they do not
use. In other words, we take a user’s observed command-
frequency table as input, and produce an expected com-
mand-frequency table as output.
Generating Recommendations
We explored two of the most commonly used collaborative
filtering techniques: user-based [34] and item-based [36].
Both of the algorithms discussed have two inputs: the
command history for each user in the community, and the
command history for the user we are generating a recom-
mendation, which we refer to as the active user.
User-Based Collaborative Filtering
User-based collaborative filtering generates recommenda-
tions for an active user-based on the group of individuals
from the community that he/she is most similar to (Figure
4). The algorithm averages this group’s command frequen-
cies, to generate an expected command-frequency table for
the active user. The algorithm details are described below.

Figure 4. The active user is in red, and his expected fre-
quency table will be compiled from his most similar
neighbors (in yellow).

1. Defining Command Vectors
For user-based collaborative filtering we require a method
to measure the similarity between two users. A common
approach for doing this is to first define a representative
vector for each user, and then compare the vectors.
A basic method is to define the command vector Vj such
that each cell, Vj(i), contains the frequency for which the

195

user uj has used the command ci. A limitation of using this
approach is that in general, a small number of commands
will be frequently used by almost everyone [41]. Thus,
when comparing the vectors, each pair of users will tend to
have high similarity because they will all share these popu-
lar high frequency commands. This is certainly the case in
AutoCAD. For example, in Figure 5, we see that the top 10
commands make up 50% of all commands issued, and the
top 100 commands make up 93% of all commands issued.

Figure 5. Cumulative percentage of command counts for
the 2000 AutoCAD commands.

We need to suppress the overriding influence of commands
that are being used frequently and by many users. Docu-
ment retrieval algorithms actually face a similar challenge.
For example, an internet search engine should not consider
two webpages similar because they both share high fre-
quencies of the words “a”, “to”, and “the”. Such systems
use a “term frequency inverse document frequency” (tf-idf)
technique [21] to determine how important a word is to a
particular document in a collection. For our purposes, we
adapt this technique into a command frequency, inverse
user frequency (cf–iuf) weighting function, by considering
how important a command is to a particular user within a
community. To do so, we first take the command frequency
(cf) to give a measure of the importance of the command ci
to the particular user uj.

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 =
𝑛𝑛𝑖𝑖𝑗𝑗

∑ 𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘

where nij is the number of occurrences of the considered
command of user uj, and the denominator is the number of
occurrences of all commands of user uj.
The inverse user frequency (iuf), a measure of the general
importance of the command, is based on the percentage of
total users that use it:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙
|𝑆𝑆|

��𝑢𝑢𝑗𝑗 : 𝑐𝑐𝑖𝑖 ∈ 𝑢𝑢𝑗𝑗 ��

where:
|S|: total number of users in the community

�{uj: ci ∈ uj}�: number of users who use ci.

With those two metrics we can compute the cf-iuf as
𝑐𝑐𝑐𝑐–𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 ⋅ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ⋅ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

with α as a tuning parameter.

A high weight in cf–iuf is obtained when a command is
used frequently by a particular user, but is used by a rela-
tively small portion of the overall population.
For each user uj, we populate the command vector Vj such
that each cell, Vj(i), contains the cf-iuf value for each com-
mand ci, and use these vectors to compute user similarity.
2. Finding Similar Users
As with many traditional recommender systems, we meas-
ure the similarity between users by calculating the cosine of
the angle between the users' vectors [35]. In our case, we
use the command vectors, as described above. Considering
two users uA and uB with command vectors VA and VB

similarity(𝑢𝑢𝐴𝐴 ,𝑢𝑢𝐵𝐵) = cos�𝜃𝜃𝑉𝑉𝐴𝐴 ,𝑉𝑉𝐵𝐵 � =
𝑉𝑉𝐴𝐴 ∙ 𝑉𝑉𝐵𝐵

‖𝑉𝑉𝐴𝐴‖ ∗ ‖𝑉𝑉𝐵𝐵‖

Thus, when similarity is near 0, the vectors VA and VB are
substantially orthogonal (and the users are determined to be
not very similar) and when similarity is close to 1 they are
nearly collinear (and the users are then determined to be
quite similar). As can be seen in Figure 6, using the cosine
works nicely with our rating system based on frequencies,
since it does not take into account the total number of times
a user has used a command, but only its frequency.
We compare the active user to all other user in the commu-
nity, to find the n most similar users, where n is another
tuning parameter.

Figure 6. Simplified example of user similarity. Alice and
Bob are more similar than Bob and Cindy as the angle
between their command vectors is smaller.

3. Calculating Expected Frequencies
To calculate an expected frequency for each command, we
take a weighted average of the command frequencies for
the active user’s n similar users. We define the expected
frequency, 𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 , for command ci and user uj:

𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖 = � 𝑤𝑤𝑗𝑗𝑗𝑗 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖
𝑛𝑛

𝑘𝑘=1

where wjk is any weighting function (which can be tuned)
and cfik is the frequency of command ci and user k.
4. Removing Previously Used commands
Once we create a list of all the command frequencies, we
remove any command which the user has been observed to
use, preventing no known commands from being sug-
gested.
5. Returning the Top 10 list
The final step is to sort the remaining commands by their
expected frequencies. The highest 10 commands will ap-
pear in the user’s recommendation list.

196

http://www.dsprelated.com/dspbooks/mdft/Orthogonality.html�

Item-Based Collaborative Filtering
Rather than matching users based on their command usage,
our item-based collaborative filtering algorithm matches
the active user’s commands to similar commands. The
steps of the algorithms are described below.
1. Defining User Vectors
We first define a vector Vi for each command ci in the n
dimensional user-space. Similar to user-based approach,
each cell, Vi(j), contains the cf-iuf value for each user uj.
2. Build a command-to-command Similarity Matrix
Next, we generate a command-to-command similarity ma-
trix, M. Mik is defined for each pair of commands i and k as:

𝑀𝑀𝑖𝑖𝑖𝑖 = cos(𝑉𝑉𝑖𝑖 ,𝑉𝑉𝑘𝑘)
3. Create an “active list”
For the active user, uj, we create an “active list” L, which
contains all of the commands that the active user has used.

𝑳𝑳𝒋𝒋 = �𝒄𝒄𝒊𝒊�𝒄𝒄𝒄𝒄𝒊𝒊𝒊𝒊 > 0�
4. Find similar unused commands
Next, we define a similarity score, si, for each command ci
which is not in the active user’s active list:

𝑠𝑠𝑖𝑖 = average(𝑀𝑀𝑖𝑖𝑖𝑖 ,∀𝑐𝑐𝑘𝑘 ∈ 𝐿𝐿)
5. Generate Top 10 List
The last step is to sort the unused commands by their simi-
larity scores si, and to provide the top ten commands in the
user’s recommendation list.
Domain-Specific Rules
The above techniques work without any specific know-
ledge about the application. In an initial pilot study, this
was shown to lead to some poor recommendations which
could have been avoided. Thus, we created two types of
rules to inject some basic domain knowledge into the sys-
tem.

Upgrades (A ⇏ B)
An upgrade is a situation where if you use command A
there is no need for you to use command B. For example, if
an AutoCAD user uses MouseWheelPan we would not rec-
ommend the Pan command, since it is a less efficient me-
chanism to activate the same function.

Equivalencies (A ⇎ B)
We consider two commands to be “equivalent” when it
makes sense for a user to use one of the two commands, but
not both. For example in AutoCAD there is the HATCH
and BHATCH commands. BHATCH is from earlier ver-
sions of the product, but it does the same thing.
We spent approximately 2 hours with a domain expert to
come up with 21 specific rules. Four of these rules were
Upgrades and 17 of the rules were Equivalencies.
OFFLINE ALGORITHM EVALUATION
Here, we present an automated method to evaluate the re-
commender algorithms using our existing offline data. Al-
though offline evaluation cannot replace online evaluation,
it is a necessary and important step to tune the algorithms
and verify our design decisions before the recommender
system is deployed to real users.

The development of the algorithm was a challenging task
since we required a metric that would indicate if a recom-
mended command, which had never been observed, would
be useful to a user. To do so we developed a new k-tail
evaluation where we use the first part of a user’s command
history as a training set, and the rest of the history as a test-
ing set. We choose to use the most recently used commands
as the testing set as opposed to a random hold out to more
closely map to our real usage situation.
Consider a user ui with a series of commands S. k-tail eval-
uation divides this command sequence into a training se-
quence Strain and a testing sequence Stest, so that there are k
unique commands in Strain which are not in Stest. For exam-
ple, the command sequence in Figure 7 is a 2-tail series
since there are two commands, SOLIDEDIT and 3D-
ROTATE, which have never appeared in the training set.

Figure 7. k-Tail evaluation of a command sequence.

To evaluate an algorithm, we find the average number of
commands which are in both a user i’s recommendation list
Ri, and their testing set Stest,i. We define the evaluation re-
sult of k-tail as hitk:

ℎ𝑖𝑖𝑖𝑖𝑘𝑘 =
∑ |𝑅𝑅𝑖𝑖 ∩ 𝑆𝑆𝑆𝑆𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛

where n is the size of community.
Algorithms
In addition to testing our user-based and item-based colla-
borative filtering algorithms, we also implemented and
evaluated Linton’s algorithm [24, 25]. The algorithm sug-
gests the top commands, as averaged across the total com-
munity, which a user doesn’t use.
Offline Results
All three algorithms were evaluated using the k-tail method
and the offline CIP data. We only included users for which
we had observed at least 2000 commands (4033 total us-
ers). The command sequence of each CIP user is divided
into a training set and a k-tail. Figure 8 shows that when
k=1, the item-based algorithm predicts the next new com-
mand correctly for 850 users, about 240 more than Linton's.

Figure 8. Offline results showing the percentage of times
the next new command was predicted in a list of 10 by
each algorithm.

ONLINE ALGORITHM EVALUATION
While our offline evaluation showed promise for our new
techniques, the results may not be fully indicative of how
our algorithms would work in practice. As such, we con-
ducted an online “live” study with real users. We collected

197

data for a set of real users, generated personalized recom-
mendations for each of them, and had them evaluate their
recommendations in a web-based survey.
Participants
We recruited 36 users (25 male, 11 female) of AutoCAD
2009 to participate in the study. To be considered for the
study users were required to use AutoCAD a minimum of
20 hours per week. Participants were aged 21 to 55 and
worked in varying fields including architecture, civil plan-
ning, and mechanical design, across North America.
Setup
To capture the participants’ command usages, we gave
each participant a custom plug-in, which would give us
access to their full CIP data from the time it was installed.
Participants were asked to continue using AutoCAD as
they normally would. Command data was recorded from
each user for approximately 10 weeks. After collecting
each user’s data, the recommendations were generated.
During the course of the study we stopped receiving data
from 12 of the participants (they changed computers, lost
their job, company inserted a new firewall, etc.) leaving us
with 24 viable participants. Three of these were used in a
preliminary pilot study. We sent out 21 surveys, with 4
participants not responding, leaving us with 17 users com-
pleting the study.
Generating Recommendations
We used a within-participant design. That is, each partici-
pant was sent recommendations from each of the three al-
gorithms. To do this, we generated a top 8 list for each of
the three algorithms. We then took the union of these three
lists, and randomized the order. Since the algorithms could
produce common commands, the final lists could range in
size, and in the study, ranged from 17 to 25 items.
Each user was sent a survey with questions about each of
the commands in their customized recommendation list.
For each recommended command participants were given a
short description of the functionality (for example “XLINE:
creates an infinite line”). Users were asked to familiarize
themselves with the command as much as possible before
answering any questions about it.
Participants were asked to rate the commands on the fol-
lowing 2 statements, using a 5-point Likert scale from
strongly disagree to strongly agree:

Q1. I was familiar with this command.
Q2. I will use this command.

In an initial pilot study, we found that users sometimes
claimed to use a command frequently, when we could tell
from their data that they did not. This was often due to two
different commands sounding similar. As such, in this
study, we made it clear to the participants that they had not
used any of the commands.
Results
Novelty and Usefulness
Recall our main design considerations for the recommender
system was for it to produce useful and novel recommenda-

tions. We used responses to Q1 to measure novelty, and
responses to Q2 to measure usefulness. Repeated measure
analysis of variance showed a significant difference in av-
erage usefulness for technique (F2,32 = 13.340, p < .0001).
The ratings were 2.82 for Linton, 3.18 for User-Based, and
3.44 for Item-Based. There was a significant difference
between Linton and Item-Based (p = .0001) and User-
Based and Item-Based (p = .038). The effect on technique
on novelty ratings did not reach significance.
As discussed in the design considerations section we are
interested in the quality of the individual recommendations
(Figure 2), particularly those falling into the “good” or
“poor” categories. As such we do not only want to look at
usefulness ratings, but rather judge the quality of the lists
which the algorithms provide by assessing the number of
good and poor recommendations which they produce.
Good and Poor Recommendations
First, we consider good recommendations to be those
where the user was not previously familiar with the com-
mand, but after seeing the suggestion, will use it. This cor-
responds to a response of strongly disagree, somewhat dis-
agree, or neither agree nor disagree to Q1, and a response
of somewhat agree, or strongly agree to Q2. We define the
percentage of good recommendations as the average num-
ber of recommendations produced which were good.
Repeated measure analysis of variance showed a main ef-
fect for the algorithm (F2,32 = 12.301, p < .0001) on percen-
tage of good recommendations. The overall percentages of
good recommendations were 14.7% for Linton, 27.2% for
User-Based, and 30.9% for Item-Based. Pairwise compari-
son using Bonferroni adjustment showed that both User-
Based (p = .006) and Item-Based (p = .001) were signifi-
cantly different from Linton, but the difference between
Item-Based and User-Based was not significant (Figure 9).

Figure 9. Percentage of “good” suggestions by technique.

We defined poor recommendations as those where regard-
less of previous familiarity, the user would not use the
command, corresponding to a response of strongly disag-
ree, or somewhat disagree to Q2.
Repeated measure analysis of variance showed a main ef-
fect for the algorithm (F2,32 = 11.486, p < .0001). The over-
all percentages of poor recommendations were 41.9% for
Linton, 32.4% for User-Based, and 22.1% for Item-Based.
Pairwise comparison showed that Item-Based was signifi-

198

cantly different from both User-Based and Linton (p < .05),
but User-Based was not significantly different from Linton
(Figure 10).
Overall, these results are very encouraging. Compared to
Linton’s algorithm, the item-based algorithm increased the
number of good commands a user would receive by
110.2%, while reducing the number of poor commands by
47.3%, and in both cases the difference was significant.
The user-based algorithm also showed promise, increasing
good commands by 85.7%, and decreasing poor commands
by 22.6%, although these differences were not significant.

Figure 10. Percentage of “poor” suggestions.

Survey
Participants were asked to rate 6 design properties of a
command recommendation system (Figure 11). The two
features considered most important were Makes Useful
Recommendations and Easy To Dismiss.

Figure 11. Subjective importance ratings for properties of
a command recommender system.

We also asked the participants to estimate how many total
commands they use. By looking at their command data for
the period of the study we are able to compare their esti-
mated with actual command counts (Figure 12). All but one
of the participants underestimated the number of com-
mands they used, and in most cases the amount was vastly
underestimated. On average our participants use more than
300% as many commands as they estimated. Part of this
may have been due to users having scripts which, when
executed, would call a series of commands.
In general the participants both greatly underestimated how
many commands they were using while at the same time
greatly overestimating what percentage of the program’s
functionality they were using. These results show that users
may not appreciate how many commands they need to use,

and how much is still available for them to learn. This pro-
vides strong evidence for the existence of the awareness
problem [15], even among professional users.

Figure 12. Actual vs. Estimated commands used.

However, we also asked users what percentage of all Au-
toCAD commands they thought they used. Taking this per-
centage, and the number of command they estimated they
used, we can calculate how many commands they thought
are in AutoCAD (Figure 13). All participants thought the
number of commands in the program was much smaller
than it truly is, with the average estimated size being 367,
or approximately 1/5th the actual total command count.

Figure 13. Actual vs. Estimated number of commands in
the entire program.

Participant Interview
We went on a workplace site visit to interview two of the
participants that had completed the study. The first partici-
pant is a manager who trains new employees and serves as
a gatekeeper for learning new features. The second partici-
pant reports to the manager. We asked both participants to
comment on every item in their personalized recommenda-
tion list of commands from the survey. In a few cases we
found that a recommended command was known to the
user but not used as it had a known limitation for their
needs and an alternative workflow was used. We also found
two cases where an upgrade rule could have been defined
to prevent a poor recommendation.
In one case, the second participant was very interested in a
recommended command (CANNOSCALE) and identified it
as something that would be very critical for future
workflows. However, since the current team project con-
ventions had already been defined, using this new com-
mand would need to be deferred until the team transitioned
to the new annotation workflow in a future project.

199

The manager was very focused on improving the team’s
efficiency. While she expects the team to already be very
proficient in using the AutoCAD software, she stated that it
would be valuable to collect CIP data for her company and
individual team to detect training opportunities on underuti-
lized commands. She also would like the ability to create a
“blocklist” of commands to block from the recommenda-
tions lists or flag with a warning that using these com-
mands may interfere with the group’s standard procedure.
Through our interview we recognized that the recommen-
dation list could also give team members an excuse to talk
to one another in a structured way about workflow and to
compare and contrast approaches. In one case, the manager
heard a command mentioned (XLINE), and said that a col-
league on her team would find it useful, and wrote it down.
In general, we got the sense that individuals work in signif-
icantly different ways, yet their workflows are not shared or
known to other team members. Thus, CommunityCom-
mands could serve as a mechanism to expose alternative
workflows from teammates and the larger community.
PRESENTATION UI
Our study has shown that we successfully developed a new
command recommendation algorithm that can significantly
improve the recommendations that a user will receive. This,
in itself, is an important contribution. However, we still
need to consider how to present recommendations to the user.
We designed a prototype of the CommunityCommands UI
(Figure 14). The interface is implemented with a WPF con-
trol inside of an AutoCAD palette using the ObjectARX
plug-in architecture. The interface contains a collection of
buttons and a list containing the most highly ranked rec-
ommendations. Clicking on a command button will activate
the command and hovering will bring up a tooltip.
A toggle at the top of the panel (Figure 15) controls the
nature of the recommendations. By looking at the user's
entire history we can generate recommendations which are
appropriate for the overall type of work the user does. We
call this “Long Term” recommendation. If we look at only
those commands used recently (say in the last 15 minutes)
we can generate "Short Term" recommendations which
should be more appropriate for the type of the work the
user is doing at the moment.

The top panel also contains buttons to access a command
“notebook”, view the command suggestion history, and
filter the recommendations based on category.
The command notebook contains all of the commands the
user has ever used and a place to store relevant tips or tricks
about the command. These notebook entries are presented
beneath the tooltip information when hovering over a
command button. Besides seeing personal notes, users
could also see notes from a manager or co-workers. Using
this mechanism, managers could put company policies and
best practices information in their notebooks, and that in-
formation would be visible to their entire teams.

With the history mechanism the user can see what com-
mands have been suggested in the past. Since after the
command has been used once it will no longer appear in the
suggestion list, this is a way to revisit previous suggestions.

Figure 14. CommunityCommands UI.

We have included a command category selector for when a
user would like to focus their learning on a particular area
of the program. For AutoCAD this list contains items such
as File I/O, Rendering, and 3D Modeling. By default com-
mands for all areas are shown. The category of the com-
mand is reflected in the color of the close box or push pin.

Figure 15. Overall system UI elements.

The bar on the individual command buttons (Figure 16)
represents the relevance of the command to the user’s cur-
rent workflow. While doing “long term” recommendations
the most relevant overall items will always be at the top of
the list. While in “short term” mode, the most relevant
commands will be at the top of list, and the length of the
bar will indicate how closely related the command is to the
commands the user is currently using.

Figure 16. Individual suggestion UI elements.

To support the design goal of minimal cost for poor sug-
gestions, each command button contains a close button to
remove the command from the list, and prevent it from
being suggested in the future. To keep a command the pin
can be clicked. Clicking on the pin again unpins the item
and reveals the close box.

200

To minimize the screen space used, yet remain visible for
ambient awareness, the palette can be docked in the unused
space beside the command line in the bottom right corner
of the application (Figure 17).

Figure 17. CommunityCommands UI docked in the un-
used space beside the command line interface.

Initial User Feedback
We demonstrated a working prototype of the Community-
Commands UI palette to both of the users described above
during our on-site survey, and it was very well received.
Both participants stated that a constantly updating, task
sensitive recommendation list would be beneficial. Also,
they agreed that being able to specify recommendations on
subtopics (e.g., modeling, annotation, etc.) would allow
them to focus on specific areas of improvement. Reviewing
past recommendations or pinning current recommendations
(as a reminder) was considered important as it would pro-
vide flexible opportunity to explore new commands when
the user had spare time. We suggested the UI palette be
placed beside the command line interface and this was well
received, as this space was wasted, even on their 21 inch
monitor.
DISCUSSION & FUTURE WORK
Our study has shown that the item-based recommendation
algorithm works well over previous research approaches.
However, there are a number of additional issues to consid-
er. It may be important to have some of the recommenda-
tions on the list be unexpected or weird – the assumption
being that you want to recommend items the user would
not naturally progress to and instead expose a new or rare
cluster of functionality. While both of these are useful op-
tions, it must be balanced with the number of recommenda-
tions a user is willing to browse at any given time. A
second issue to consider is the addition of new commands
to the software application – this typically happens with
new releases. Software vendors may want to “push” com-
mands into the recommendation list since essentially these
commands are experiencing a “cold start” as no users have
used the commands yet. Entry points could be determined
by product designers or by using the beta-customer testing
usage patterns that typically precede a software release.
The recommendation algorithm could be more adaptive by
looking at the adoption rate of commands being suggested.
This specific information could be fed back into the re-
commender where we could overweight the commands that
are more highly adopted. In addition, as often found in oth-
er recommender based systems, we could allow users to
provide explicit feedback on the quality of the individual
recommendations and feed this into the algorithm.

A limitation of the current design is that once a command is
used once, it is never recommended again. Here we could
modify the algorithm to reintroduce the command after
looking at how frequently and long ago it was used. The
user interface could also allow users to dismiss a recom-
mended command for the short term or forever.
Future research could investigate recommending higher
level tasks to the user. These tasks would contain a collec-
tion of commands and sequences of workflows. Similarly,
future improvements could inspect short sequences of
commands and recommend a single advanced command
that could replace the sequence or even an alternative
workflow strategy. Also, instead of recommending a com-
mand by presenting the command name, we could present
images of the effect the command does onto application
data. Lastly, a longitudinal study using the Community-
Commands UI and recommendation algorithm would be
useful to measure long-term command adoption patterns.
CONCLUSION
With CommunityCommands we have adapted modern re-
commender collaborative filtering algorithms together with
rule-based domain knowledge to address the learning prob-
lem in complex software applications. To test the algo-
rithms offline we developed the k-tail evaluation system
and then conducted a comprehensive user study by generat-
ing personalized recommendations for a group of real us-
ers. Results showed a 2.1 times improvement in the number
of good recommendations over previous research. The am-
bient user interface was designed to present the recommen-
dations to the user, while satisfying our outlined design
principles, and considering the lessons learned from visit-
ing our participants.
ACKNOWLEDGEMENTS
The authors thank Joe Konstan for his valuable advice,
Chris Willets for collecting the CIP data, and Ramtin Attar
for his help with AutoCAD.
REFERENCES
1. Abran, A., Khelifi, A., Suryn, W. and Seffah, A. Usabil-

ity Meanings and Interpretations in ISO standards.
Software Quality Journal. 11(4): 325-338.

2. Adomavicius, G., Tuzhilin, A. (2005) Toward the next
generation of recommender systems: a survey of the
state-of-the-art and possible extensions. Transactions on
Knowledge and Data Engineering 17(6): 734-749.

3. Apple Computers iTunes (http://www.apple.com/itunes)
Active March 2009.

4. Benyon, D. (1993) Adaptive Systems: a Solution to
Usability Problems. Journal of User Modelling and
User-Adapted Interaction, 3(1): 65-87.

5. Claypool, M., Le, P., Waseda, M., Brown, D. (2001)
Implicit interest indicators, in ACM IUI.p.33-40.

6. Cutrell, E., Czerwinski, M., and Horvitz, E. (2001)
Notification, Disruption, and Memory: Effects of
Messaging Interruptions on Memory and Performance.
ACM CHI. p.263-269.

201

7. Czerwinski, M., Cutrell, E., and Horvitz, E. (2000)
Instant messaging: Effects of relevance and time. People
and Computers XIV: Proceedings of HCI. p.71-76.

8. Davison, B., and Hirsh, H. (1998) Predicting Sequences
of User Actions. the AAAI/ICML Workshop on
Predicting the Future: AI Approaches to Time-Series
Analysis. AAAI. p.5-12.

9. Dent, L., Boticario, J., McDermott, J., Mitchell, T., and
Zabowski, D. (1992) A Personal Learning Apprentice.
AAAI. p.96-103.

10. Farzan, R., and Brusilovsky, P.. (2006) Social
Navigation Support in a Course Recommendation
System. Proceedings of Hypermedia and Adaptive Web-
Based Systems. p.91-100.

11. Fischer, G. (2001). User Modeling in Human–Computer
Interaction. UMUAI. 11(1-2): p.65-86.

12. Fogarty, J., Hudson, S. E., Atkeson, C. G., Avrahami, D.,
Forlizzi, J., Kiesler, S., Lee, J. C., and Yang, J. (2005).
Predicting human interruptibility with sensors. ACM
TOCHI. 12(1): p.119-146.

13. Gajos, K. Z., Everitt, K., Tan, D.S., Czerwinski, M., and
Weld D.S. (2008) Predictability and Accuracy in
Adaptive User Interfaces. ACM CHI. p.1271-1274.

14. Grossman, T., Fitzmaurice, G., and Attar, R. (2009) A
Survey of Software Learnability: Metrics,
Methodologies and Guidelines. ACM CHI.

15. Hermens, L.A., and Schlimmer, J.C. (1994) A Machine-
Learning Apprentice for the Completion of Repetitive
Forms. IEEE Expert 9(1): p.28-33.

16. Hill, W., Stead, L., Rosenstein, M., and Furnas, G.
(1995) Recommending And Evaluating Choices in a
Virtual Community of Use. ACM CHI. 194 - 201.

17. Horvitz, E. (1999) Principles of Mixed-Initiative User
Interfaces. ACM CHI. p.159-166.

18. Hsi, I. and Potts, C. (2000). Studying the Evolution and
Enhancement of Software Features. IEEE SM. 143-151.

19. Hsu, Mei-Hua. (2008) A Personalized English Learning
Recommender System for ESL Students. Expert
Systems with Applications, 34(1): 683-688.

20. Igarashi, E., and Hughes, J.F. (2001) A Suggestive
Interface for 3D Drawing. UIST. p.173-181.

21. Jones, Karen Spärck (1972) A statistical interpretation
of term specificity and its application in retrieval. Jour-
nal of Documentation, 60(5): p.493-502.

22. Knabe, K. (1995). Apple guide: a case study in user-
aided design of online help. ACM CHI. p.286-287.

23. Linden, G., Smith, B., and York, J. (2003) Amazon.com
recommendations: item-to-item collaborative filtering.
Internet Computing, 7(1): p.76-80.

24. Linton, F., and Schaefer, H. (2000) Recommender
Systems for Learning: Building User and Expert
Models through Long-Term Observation of Application
Use. UMUAI. 10(2-3): p.181-208.

25. Linton, F., Joy, D., Schaefer, H., and Charron, A..
(2000) OWL: A Recommender System for

Organization-Wide Learning. Educational Technology
and Society, 3(1): 62-76.

26. Liu, J., Wong, C.K., and Hui, K.K. (2003) An Adaptive
User Interface Based On Personalized Learning. Intelligent
Systems, 18(2): 52-57.

27. McCrickard, S.D., Czerwinski, M., and Bartram, L.
(2003) Introduction: design and evaluation of
notification user interfaces. Int. J. Human-Computer
Studies 8(5): p.509-514.

28. McGrenere, J., Baecker, R. M., and Booth, K. S. (2007)
A Field Evaluation of An Adaptable Two-Interface
Design for Feature-Rich Software. TOCHI. 14(1): #3

29. McNee, S.M., Kapoor, N., and Konstan, J.A. (2007) Don't
look stupid: avoiding pitfalls when recommending
research papers. CSCW. p.171-180.

30. Miller B. N., Albert, I., Lam, S. K., Konstan, J. A.,
Riedl, J. (2003) MovieLens unplugged: experiences
with an occasionally connected recommender system,
ACM IUI. p.263-266.

31. Mitchell, J., and Shneiderman, B. (1989). Dynamic versus
static menus: an exploratory comparison. SIGCHI Bull.
20(4): p.33-37

32. Owen, D. (1986), Answers first, then questions. In: D. A.
Norman and S. W. Draper (eds.), User-Centered System
Design, New Perspectives on Human-Computer Interac-
tion. p.361-375

33. Paymans, T.F., Lindenberg, J. and Neerincx, M. (2004).
Usability trade-offs for adaptive user interfaces: ease of
use and learnability, ACM IUI. p.301-303

34. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and
Riedl, J. (1994) GroupLens: An Open Architecture for
Collaborative Filtering of Netnews. CSCW. p.175-186.

35. Salton G., McGill M.J., (1983), Introduction to Modern
Information Retrieval'. McGraw-Hill, New York

36. Sarwar, B., George, K., Konstan, J., and Riedl, J. (2000)
Analysis of Recommendation Algorithms for E-
Commerce. ACM Electronic Commerce. p.158 - 167.

37. Shardanand, U., and Maes, P. (1995) Social Information
Filtering: Algorithms for Automating Word of Mouth''.
ACM CHI. p.210 - 217.

38. Shen, J., Li, L., Dietterich, T.G., and Herlocker J.L.
(2006) A Hybrid Learning System for Recognizing
User Tasks from Desktop Activities and Email
Messages. IUI. p.86-92

39. Shneiderman, B. (1983). Direct Manipulation: A Step
Beyond Programming Languages. Computer. 16(8): 57-69.

40. Shneiderman, B., (1997) Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley Longman Publishing Co., Inc.

41. Witten I., Cleary, J., and Greenberg, S. (1984). On fre-
quency-based menu-splitting algorithms. Intl. Journal
of Man-Machine Studies 21(2): 135-148.

42. Xiao, J., Stasko, J. and Catrambone, R. (2004). An Em-
pirical Study of the Effect of Agent Competence on Us-
er Performance and Perception. Joint Conference on
Autonomous Agents and Multiagent Systems. p.178-185.

202

