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Abstract—It has been shown that evolutionary and devel-
opmental processes can be used for emergence of scalability,
robustness and fault-tolerance in hardware. However, designing
a suitable representation for such processes is far from straight-
forward. Here, a bio-inspired developmental genotype-phenotype
mapping for evolution of spiking neural microcircuits in an FPGA
is introduced, based on a digital neuron model and cortex struc-
ture suggested and verified previously by the authors. The new
developmental process is based on complex multi-cellular protein-
protein and gene-protein interactions and signaling. Suitability
of the representation for evolution of useful architectures and its
adaptability is shown through statistical analysis and examples
of scalability, modularity and fault-tolerance.

Keywords-spiking neural networks; neurodevelopment; fault-
tolerance; evolvable hardware; embryonic hardware; morpho-
genesis;

I. INTRODUCTION

The idea of evolving a small adaptable, robust, fault-tolerant

and intelligent brain in silicon suitable for a given class of

problems has been around for more than a decade. Numerous

different methods to evolve artificial neural networks [1] have

been introduced, which were successful in creating intelli-

gent systems to some extent. However, oversimplification of

natural processes in these methods may have impaired the

systems. Inclusion of some of the complexities of these natural

processes has been shown to lead to higher performance

and emergence of new capabilities. For instance, the higher

computation power of spiking neural microcircuits compared

to traditional neural networks [2] and the intrinsic ability of

recurrent spiking neural networks to process temporal patterns

[3] both indicate that including a spiking mechanism with

all of its complexities is beneficial. The positive impact of

introducing developmental processes on the emergence of

robustness [4], scalability [5], regeneration, and fault-tolerance

[6] in neural networks all implies that incorporating some of

these complexities may improve the final performance of the

system.

Inclusion of these complexities, on the other hand, requires

a huge amount of computational power that can make an

evolutionary approach intractable. The challenge may appear

insurmountable given that nature has accomplished the equiv-

alent to this through billions of years of evolution, employing

huge numbers of processing elements, optimizing each system

and process from scratch. However, there is a chance that

by adoption of the right combination of natural processes,

and imitation of this subset of nature at a sufficient level of

detail, desired effects can be produced. Evolvable hardware

[7] may enable us to exploit computational resources at a

lower level, leading to fine-grained system interactions, low-

level parallelism, and a biologically more plausible approach

compared to traditional evolutionary computation. The present

paper proposes a new bio-plausible developmental process for

evolvable hardware as another step towards creating adaptable

and bio-inspired spiking neural microcircuits in FPGAs using

evolutionary, developmental and learning processes.

II. BACKGROUND

Evolvable hardware has been previously used for evolving

neural microcircuits. For example, Upegui et al. evolved a 3-

layer recurrent spiking neural network on a Xilinx Spartan

FPGA [8]. However, the number of neurons and synapses,

general architecture of the network, and the neuron parameters

were fixed during evolution. The seminal work of Thompson

[9] with a cellular structure on Xilinx XC6264 not only

revived the field of intrinsic evolvable hardware, but also

showed the power of evolutionary cellular systems on FPGAs.

Different multi-cellular developmental systems for FPGAs

have been designed by Haddow and Tufte, Liu, Miller and

Tyrrell, Gordon, and many others, cited in [5]. Cellular systems

have been also used for development (and simulation) of

neural networks. Roggen presented a comprehensive review

of the developmental systems in hardware and introduced a

new classification of developmental systems in [5], and noted

that most of the advantages of developmental systems lie

in the cellular online developmental systems implemented in

hardware. He also introduced such a cellular development

system for evolvable hardware and used it to evolve neural

networks for pattern recognition and robot navigation [5].

However, the connectivity patterns of the neurons and the
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neuron model were limited to six fixed patterns and a simplis-

tic leaky integrate and fire soma model. Recently, Upegui et

al. introduced a dynamic routing algorithm to produce nature

inspired activity-dependent synaptogenesis in the bespoke cel-

lular reconfigurable chip Ubichip [10]. While this is a very fast

routing algorithm of its kind, it has some scaling limitations

to be resolved.

Evidence suggests that structural plasticity [11] and wiring

delays [12] play major roles in the brain. The placement and

wiring of the neurons are also optimized for the high inter-

connectivity in the brain [13]. In contrast, most of the existing

evolvable hardware neural network models (e.g. [5], [8]) are

not capable of flexible neurite growth in silicon. Typically, they

either are restricted in terms of number of inputs per neuron

or impose constraints on the patterns of connectivity and/or

placement on the actual chip mostly due to implementation

issues. They also do not allow heterogeneous networks with

flexible parametric neurons and learning rules as important

bio-plausible features. However, a flexible parametric digital

neuron model [14] and a cellular structure [15] that allow

diverse patterns of neurite growth in FPGAs has been intro-

duced recently. Although this new model provides a flexible

platform for construction and fast simulation of spiking neural

microcircuits, evolving such networks for a given problem

needs suitable developmental and evolutionary processes that

can cope with the complexity and the raggedness of the fitness

landscape. Designing such a genotype-phenotype mapping is

far from straightforward.

Following a nature-inspired approach, here we propose a

bio-plausible developmental genotype-phenotype mapping for

evolution of spiking neural microcircuits in an FPGA. It

is based on the digital neuron model and cortex structure

suggested and verified in [14] and [15], multi-cellular protein-

protein, gene-protein interactions, and signaling.

III. HARDWARE PLATFORM

The neural microcircuit simulation process runs on an

FPGA-based hardware platform. The proposed developmental

process (currently implemented in software running on a PC)

will be used to reconfigure the FPGA during the development

and simulation. The neuron model and the cellular structure

used in this system are explained in this section. While the

details of the neuron model are not central to this paper, its

general architecture and features provide some background for

understanding of the developmental process proposed here.

A. Digital neuron model

The digital spiking neuron model used as the basis of this

work is explained in detail in [14]. Here, we summarize its

general design and advantages. In this model, each digital

neuron consists of a set of synapse units and a soma unit

connected in a ring architecture. The axonal input of each

synapse is connected to the axon of a pre-synaptic neuron.

This architecture creates a two-way communication channel in

the dendrite and allows the development of different dendrite

structures [14]. The dendritic lines and D flip-flops, which

connect the units, form a loop (dendritic loop) that conveys

data packets. The soma unit sends a packet containing the

current membrane potential on its dendritic output. Synapse

units process the packets. If a synapse unit receives a pre-

synaptic action potential, it adds (or subtracts) its synaptic

weight to the first arriving packet. Therefore, the soma unit

receives the sum of membrane potential and post-synaptic

currents in its dendritic input. After processing this packet, the

soma unit sends another packet with the updated membrane

potential. Serial arithmetic is used in all the units to create

pipelined parallel processing inside each neuron.

This model is suitable for evolutionary development of

heterogeneous spiking neural networks on FPGAs in different

ways. First, it uses a parametrically flexible and bio-plausible

soma model, which has the potential to be upgraded to more

plausible models if hardware budget permits. Secondly, it

provides the means for adding a local (thus parallel) learning

process such as STDP (Spike-Time-Dependent Plasticity) [16]

in each synapse. Moreover, it is relatively fast (up to 4 million

updates per second) and occupies acceptable area on the

FPGA (less than two and four CLBs for synapse and soma

units). More importantly, it allows us to develop adaptable

dendrite and axon branches in a cellular cortex structure. The

user is free to trim (add) dendrite branch-lets at any point

simply by switching few multiplexers. This flexibility is vital

for a developmental model that needs on-line growth and

modification.

B. The cortex structure

In this work, the cellular platform for development of the

neural microcircuits in the FPGA shall be called the cortex.

Detailed design and implementation of this cortex is explained

in [15]. Here we review its general design and features. The

biological cortex is mainly composed of neurons and glial

cells [17]. Biological glial cells provide support and nutrition

for neurons and act as glue between them. Recently, they

were suspected to be also involved in the synapse formation

as well as axon and dendrite development [17], [18]. In this

study, we use the words glial cells referring to non-neuron

cells that provide the means for routing dendrites and axons,

and formation of synapses at their intersections.

The cortex consists of a 2D grid of glial cells with neuron

soma cells embedded in the middle of them wrapped around

like a cylinder so that the top and bottom rows of cells are

neighbors. A column (ring) of IO cells is also connected to

the left side of the cortex that provides the interfacing with the

environment. Soma cells are two times larger than glial cells

and fit into two vertically adjacent grid cells. Fig. 1 shows a

12x24 cortex with twenty neurons.

Each glial cell contains a synapse unit. A glial cell receives

an axonal and a dendritic input signal from each side and

has an axonal and a dendritic output on each side. Soma

cells have six of those signals as they are in contact with six

neighboring glial cells. Each cell has a number of multiplexers

for routing dendrite and axon signals. Unlike axons, dendrites

are two-way signals, consisting of two lines forming a closed
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Fig. 1. (a) A sample 12x24 cortex with 20 neurons. (b) The 2D cylindrical
structure of the cortex.

dendritic loop. Each soma cell can sprout up to six axons and

six dendrites into its neighboring glial cells directly from the

cell body before any division into branch-lets. It is possible

to route up to four axons and four dendrites through a glial

cell. There are also other multiplexers inside glial cells that

can connect the synapse unit to any routed axon and dendrite

in the glial cell. The only significant limitation is that there is

only one synapse unit available in each glial cell.

C. The Cortex reconfiguration

The cortex structure is designed for Virtex-5 architecture. A

Cortex of size 12x120 is implemented in a XC5VLX50T chip.

The cortex can be reconfigured to simulate any developing

neural microcircuit. The reconfiguration process is compre-

hensively explained in [15]. However, in current commercial

FPGAs (including Virtex-5), relocatable reconfiguration of

soma cells is not a straightforward process. In a relocatable

design, all the routed internal signals of each cell need to

be routed only through routing resources inside that cell area

and all the cell input/output signals should use the same

signals regardless of cell type (soma, glial or IO cell). For

simplicity, the location of soma and IO cells are predefined

and fixed during the evolutionary process. Based on those

locations, a primary configuration bit-stream will be generated

using traditional FPGA design process and tools. Then during

the developmental process, the reconfigurable multiplexers

(implemented in LUTs) on the edges of the soma and glial

cells are reconfigured in every development cycle using the

results from developmental process. This way the network

simulation can keep running on the chip during development

without any interruption. This allows the neurodevelopment

process to be provided with the activity from the network

simulation for addition of activity dependent synaptogenesis

in future.

IV. NEURODEVELOPMENTAL PROCESS

The development process proposed in this paper is similar

to the fractal proteins evolutionary gene regulatory network

[19] in terms of using the same general bio-plausible genome

structure, and basic protein-protein and gene-protein interac-

tions. This is mainly motivated by the evolvability of the

fractal proteins in different successful applications [19], [20].

Adoption of these features is based on an analytical study

of fractal proteins in [20]. The fractal protein system uses a

fractal protein translation and folding mapping into 2D shapes.

Using 2D fractal protein shapes in a multi-cellular system

slows down the protein folding and development processes

significantly. Therefore, a faster and simpler protein folding

mapping into 1D protein shapes is introduced in this study.

However, the protein folding process is a separate module and

can be replaced with any other mapping in order to compare

the evolvability and performance of different methods. The

neurodevelopmental process proposed here, fully exploits the

intercellular signal proteins using novel behavioral protein-

protein interactions.

A. Definition of proteins

Proteins are defined here as strings of real numbers in

[0,1] of a certain length (L). The values of the real numbers

collectively define the shape of a protein. Fig. 2 shows two

samples of protein shapes of length L = 10. These values are

calculated by the protein-folding mapping explained in section

IV-C.

B. Genome structure

The genome consists of a single chromosome of variable

number of genes. Each gene consist of fifteen fields:

pa, pb, pr, px, ps TA TC a, b, r, x, s Cs Cd Type

The first five values (pa, pb, pr, px, ps) specify the shape of

the promoter using the protein-folding mapping. These values

along with TA (affinity threshold) and TC (concentration

threshold) form the promoter region of a gene. The next five

values (a, b, r, x, s) specify the shape of the protein synthesized

by this gene using protein folding. These values along with

Cs (stability coefficient - specifying the decay rate of the

protein), Cd (diffusion coefficient of the protein) and Type
(protein type) form the coding region of the gene. All values

are real except for Type, which is a bit-string that can specify

any combination of the protein types. In this system, proteins

are of eight different types (written in italics). They can be

classified into two major groups: transcription factors and

structural proteins. Transcription factors, which regulate the

expression of the genes, include maternal factors (soma cell
maternal protein, glial cell maternal protein, IO cell maternal
protein) and regulatory proteins. Structural proteins, which are

virtually part of the cell structure and influence the behavior

of the cell, include behavioral proteins (axon growth protein,
dendrite growth protein, synapse formation protein) and cell
receptor proteins. The role of each protein type is explained

later in this section.
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C. Protein folding

Protein folding is the process that translates a set of

a, b, r, x, s values (or pa, pb, pr, px, ps values in case of a gene

promoter) into a protein (or promoter) shape which is a string

of length L of real values. This is performed using the logistic

map [21]. The logistic map is a very simple dynamical system

of form:

xk+1 = μxk(1− xk) (1)

that can create very complex time series with periodic, or

chaotic behavior. In this equation xk is the value of the time

series in step k, and

μ = 3 + tanh(5|r|) (2)

is the logistic map parameter. The x field in the gene specifies

the initial value of xk in this equation. The r field is also

used to calculate μ that controls the behavior of the logistic

map dynamical system. This equation will be first iterated for

n = |�L·s�| times. Then the xk values in subsequent iterations

of the equation are scaled and offset by a and b using equation:

Vk−n = (2a− 1)xk + 2b− 1 (3)

to calculate all the protein shape values Vi for i = 1..L.

This way, s controls the number of skipped iterations before

using the xk values. The pa, pb, pr, px, ps fields are used

instead in case of promoter translation. All the protein and

promoter shapes are calculated using this mapping and stored

before starting the developmental process in the cells. Fig.

2 shows two sample protein shapes. These shapes can be

shifted horizontally by changing the value of s. Protein shapes

can be scaled and shifted vertically by changing a and b
respectively. The r value in the gene specifies the behavior

of the dynamical system, and thus the shape of the protein.

The x value in the gene can significantly affect the shape of the

protein, particularly when the dynamical system has a chaotic

behavior and |s| � 0. This is because of the sensitivity of a

chaotic system to initial conditions. But this sensitivity can be

smoothly controlled by evolution using both s and r values.

D. Protein diffusion

For each protein described in the genome, a concentration

value in range of [0, 1] is defined at each cortex cell (thus two

concentration values for two half cells of a soma cell). Before

any protein-protein or gene-protein interaction takes place, the

amount of proteins diffused into neighboring cells should be

calculated. Here, a simple weighted average of concentration

values of the cell and its neighboring cells of form:

ct+1
0 = Cs

(
(1− Cd)ct

0 +
1
4

4∑
i=1

Cd · ct
i

)− 0.002 (4)

is used where ct
0 is the concentration value in the centre cell at

development step t, and ct
i, i = 1, 2, 3, 4 are the concentration

values in neighboring cells. Cs is the stability coefficient of the

protein, which is a real number in [0, 1], with 1.0 meaning no

decay. Cd is the diffusion coefficient, again a real number in
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Fig. 2. Example of two protein shapes (Vi, i = 1..L) of length L = 10.
Their concentrations are shown as bars on the left. Merging these proteins
results in the protein compound shape (V m

i ) at the bottom.

[0, 1], with 0 meaning no diffusion. Zero diffusion coefficients

are useful for those internal proteins that cannot cross the cell

membrane. The −0.002 offset makes sure that concentration

can actually drop to zero instead of converging to zero [19].

Concentrations out of the [0, 1] range are clipped to 0 and 1.

E. Protein-protein interactions

There are different types of protein-protein interactions

depending on the protein types. Proteins can merge together

to create a protein compound. The protein compound is also

a string of real values of length L. Each value in the protein

compound string is equal to the concentration of the protein

with the highest value in that position of the string [19]. Fig.

2 shows how two different sample protein shapes of length

L = 10 are merged to result in a protein compound of the

same length. Note that protein compounds do not have separate

values for shapes and their concentrations. Protein compound

values are actually concentration of shapes. Only proteins

with nonzero concentration (existing proteins in a cell) can

contribute to the shape of the protein compound. This is to

create a very diverse and dynamic set of protein compounds

shaped by the protein concentrations in different regions of the

cortex. All the proteins in the genome, which are tagged as cell
receptor protein in the Type field of the genes, are merged in

each cortex cell to create a compound cell receptor shape. This

string of real values is then used as a mask to filter the shape of

those proteins that are tagged as intercellular signal protein,

meaning that only those shape values with a corresponding

nonzero value in the mask are used [19]. The filtered shapes

of the intercellular signal proteins are then merged with all the

proteins that are tagged as a transcription factor (regulatory
protein or any type of maternal factors) to create a protein

compound.

F. Gene expression (gene-protein interaction)

In each cell, the protein compound interacts with the shape

of the promoter in a gene [19], resulting a difference value δ,

6



defined as:

δ =

∑L
i=1,V p

i �=0 |V m
i − V p

i |
N

(5)

where V m
i and V p

i are the ith values in the protein compound

string and in the promoter shape string of the gene, and N is

number of nonzero values of V p
i for i = 1..L. The probability

of the gene expression is then defined as [19]:

P (E|δ, TA) =

⎧⎨
⎩

1+tanh
(
30(2TA−1+δ)

)
2 if TA < 1

2
1+tanh

(
30(2TA−1−δ)

)
2 if TA ≥ 1

2

(6)

where TA is the affinity threshold of the gene promoter. If a

gene is expressed, the concentration of the protein coded in

the gene will be increased (or decreased) by [19]:

σ = cp · tanh(cp + TC) (7)

where TC is the concentration threshold of the gene promoter,

and cp (total concentration seen by promoter of the gene) is

calculated using [19]:

cp =

∑L
i=1,V p

i �=0 V m
i

N
. (8)

G. Neurite growth and synapse formation

Behavioral proteins control the growth and guidance of

the neurite in this system. Currently each soma sprouts six

axonal and six dendritic growth cones at the beginning of the

developmental process. However, the probability of generation

of a growth cone can also be controlled by separate behavioral

proteins (to be added to the protein types). At each develop-

ment step, the likelihood of growth of growth cone j toward

side d of the glial cell (where routing resources are available)

is calculated using:

Λ(Gjd) =
∑L

i=1 V
mgj

i · V mΔd
i

L
(9)

where V
mgj

i is the ith value in the growth protein compound

(merging all growth proteins tagged as axon growth protein
or dendrite growth protein) in the mother cell of growth cone

j, and V mΔd
i is the ith value in the gradient compound of all

proteins across side d. This gradient compound is calculated

in the same way that protein compounds are calculated, except

that the gradient (difference) of the protein concentrations

across side d of the glial cell is used instead of the local

protein concentrations. For each side of a glial cell (processed

in a clockwise order), the growth cone with the highest

positive likelihood will be routed towards that side. Clearly,

the likelihood of growth into soma cells and out of the right

edge of the cortex is zero. Moreover, dendrites cannot grow

into IO cells. Each IO cell has an axonal growth cone in

the neighboring glial cell. Axons of other soma and IO cells

can also grow and connect to IO cells. Currently, no neurite

branching is allowed and when a growth cone grows into a

neighboring cell it moves to that cell and does not duplicate.

However, the digital neuron model, cortex cellular structure,

and the neural-development algorithm allow the addition of

that functionality by adding more behavioral proteins to the

system for generation of growth cones, branching, or just by

setting a constant threshold for growth likelihood to detect

branching.

Currently, the synapse formation protein type is not used

and whenever an axon and a dendrite of two different cells are

present in a glial cell with an available synapse unit, a synapse

will form. However, a similar but three-way interaction of

synapse formation proteins of two mother cells with the local

protein compound in the glial cell can be used to calculate the

likelihood of synapse formation between two neurites. Every

time that a neurite grows into another cell or a synapse is

formed, the configurations of the associated multiplexers are

updated to reflect the latest changes.

H. General algorithm

The general neural development algorithm repeats the same

procedure for all cells in all development cycles as follows:

Initialize the cortex and arrange the soma cells

Calculate and store all protein and promoter shapes

for all development steps do
for all cortex cells do

for all proteins do
Diffuse protein

end for
for all genes in the genome do

Express the gene with prob. P (E) and increase (or

decrease) the associated concentration

end for
if cell type = glial then

process glial cell

end if
if cell type = soma then

process soma cell

end if
Update multiplexer configurations

end for
Reconfigure the hardware platform accordingly

end for
Processing a glial cell includes synapse formation and

neurite growth. Synapse formation involves checking if a free

synapse unit, at least one axon and one dendrite exist in the

cell and then forming a synapse between two neurites with

the highest likelihood of synapse formation. Neurite growth

involves calculating the growth likelihood of all growth cones

in the cell towards each side and then growing the ones with

the highest nonzero likelihood. At the end, the configuration

of the corresponding multiplexers involved in the synapse

formation and neurite growth are updated accordingly. The

neural development algorithm is currently implemented in a

synchronous and sequential manner on a CPU. However, with

some inter-thread coherence precautions, it is possible to have

parallel threads for protein diffusion, gene expression, and

neurite growth processes in each cortex cell. Therefore, this
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Fig. 3. Gene regulatory network of the designed genome showing the gene-
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algorithm lends itself to massively-parallel architectures like

FPGAs and GPUs (Graphics Processing Units).

V. EXPERIMENTS

Before performing any evolvability studies, it is always

necessary to check if the new developmental process is able

to produce the desired phenotypes at all. A set of experiments

was carried out to examine the suitability of this developmental

representation for generation of useful neural microcircuits

through statistical analysis. The possibility of the emergence

of scalability, modularity and fault-tolerance using this system

was also checked using designed genomes. The protein size

(L) and max development cycles were set to 10 and 200

respectively in these experiments.

A. Network characteristics

The aim of this experiment is to check the possibility

of growing useful networks using the new developmental

process. Brain networks and animal nervous systems show the

properties of small-world networks, that is higher clustering

coefficients and shorter characteristic path lengths (average

shortest path between any two nodes) compared to random

networks [22]. Three set of 1000 networks were developed

using 3 different arrangements of 120 neurons in the cortex

and randomly generated genomes of length 16. The real values

in the genes were set to random numbers in the range [0,1]

and the protein types were set to random binary strings. The

characteristic path length and clustering coefficient of the

resulting networks were recorded for three different neuron

arrangements in the cortex.

B. Modularity and scalability

A very simple genome of 5 genes was designed to show how

this genotype-phenotype mapping lends itself to emergence

of scalability and modularity. Fig. 3 shows a schematic of

the gene regulatory network of the designed genome. Soma

and IO cells each have a maternal factor of their own (MS

and MIO), which is sustained at saturation level by positive

feedback loops of gene 1 and 2 respectively. These maternal

factors have a diffusion coefficient of zero, meaning that they

are internal proteins and cannot cross the cell membrane. Each

of those maternal factors exactly matches and enhances the

promoters of the gene 3 and 4, which leads to synthesis and

diffusion of intercellular signal proteins (SS and SIO - with

diffusion coefficients of 0.5 and 0.99). The soma cell maternal

factor also exactly matches the promoter of the gene 5, which

synthesis another internal protein in soma cells (FG - with

diffusion coefficient of zero) that works both as axon growth

factor and dendrite growth factor. The shape of this growth

factor can interact with the merged gradient of intercellular

signal proteins diffused form both soma and IO cells resulting

in growth probably P(G). This genome was used to develop

networks using two different cortex sizes (12x12 and 12x24

with 9 and 18 neurons).

C. Fault-tolerance

Fault-tolerant neural microcircuits can be very useful when

developed in a huge cortex with large numbers of neurons

and glial cells. Fabrication of such a huge cortex in a very

large VLSI chip involves low yield factors or high number

of faulty cells in the cortex. SEUs (single-event upsets) and

unit failures are more frequent in such large systems. A

fault-tolerant and robust cortex can resolve these problems.

Although evolutionary process will be able to evolve networks

that are robust to loss of nodes and links, a bio-inspired

developmental system like this can also contribute to fault-

tolerance and robustness of the system. This can be achieved

either by regeneration or by growth cones avoiding the faulty

cells in the first place. Errors and faulty cells might be detected

by rather traditional methods such as post-fabrication test,

POST (power-on self-test), TMR (triple modular redundancy)

or by more innovative and bio-plausible methods such as

artificial immune systems [23].

The aim of this experiment is to demonstrate the basic

fault-tolerance capability of the developmental system. For this

experiment, another simple genome was designed that simply

grows an axon from one neuron to another neuron. The IO cell

signal protein was used to initiate the differentiation of two

neuron types. The network was developed and the routing path

of the axon was recorded. In the second step, a glial cell in the

axon routing path were tagged “faulty” in order to simulate the

effect of a fabrication fault. It was assumed that “faulty” cells

are detected either by an error detection mechanism or using a

post-fabrication test before starting the developmental process.

In this experiment a “faulty” cell simply does not involve in

the protein diffusion process (setting all protein concentrations

in the cell to zero). Therefore, the likelihood of neurite growth

into that cell will be always non-positive. It was anticipated

that the axon should deviate from its original path and bypass

the “faulty” glial cell.
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Fig. 4. Distribution of the characteristic path length, clustering coefficient,
and the ratio of clustering coefficient to characteristic path length for 1000
developed networks using randomly generated genomes with 3 different
neuron arrangement patterns.

VI. RESULTS

A. Network characteristics

Fig. 4 shows the distributions of characteristic path length

and clustering coefficient, along with the distribution of their

ratio of the developed networks with three different neuron ar-

rangements. All the distribution histograms are cropped at the

top to show details, as peak values of the histograms are not of

interest here. All three arrangements showed almost the same

distribution of characteristic path length with a fat tail on the

left side, meaning that developing networks with short char-

acteristic paths is possible using this system. The clustering

coefficient was more influenced by neuron arrangement and

some networks with clustering coefficients of greater than 0.5

was recorded in case of the third arrangement. Development

of networks with both a high clustering coefficient and a short

characteristic path length at the same time is captured in the

distribution of the ratio of these two, in the third column of

Fig. 4. The right tail of the distribution of this ratio shows that

generation of such networks with this developmental process

is not impossible. The characteristic path length and clustering

coefficient of some of the generated networks were similar to

statistics of the brain networks reported in [22], namely those

of C.elegans.

B. Modularity and scalability

Fig. 5 shows the results of the second experiment for two

different cortex sizes of 12x24 (Fig. 5(a)) and 12x12 (Fig.

5(b)). Fig. 5(c) shows the diffusion patterns of the five proteins

in the cortex at the end of the development process. The same

connectivity motif was repeated vertically for all cortex sizes

showing the possibility of creating a modular structure using

the neurodevelopmental system.

C. Fault-tolerance

Fig. 6(a) shows the single axon grown from one neuron to

the other along with the diffusion pattern of six proteins in

the cortex after normal development. The glial cell, which is

(a)

(b)

)

 
(c)

Fig. 5. (a) The developed network using the designed genome in a 12x24
cortex. (b) The developed network using the same genome in a 12x12 cortex.
(c) The protein diffusion patterns of the 12x24 cortex.

(a) (b)

Fig. 6. (a) The single axon routed from one neuron to the other along with
the diffusion pattern of six proteins in the cortex. (b) The axon diverted to
bypass the faulty glial cell (marked with a gray square) along with the affected
protein concentration pattern.

selected to be the “faulty” cell in the second step is labeled

with a square in Fig. 6. In the second step (Fig. 6(b)), the glial

cell was actually tagged as “faulty” and development process

was rerun. Concentration levels of all proteins in the “faulty”

cell were zero. The effect of the “faulty” cell in the protein

diffusion pattern is notable in the third protein diffusion (Fig.

6(b) top-right). Consequently, the axon avoided the “faulty”

glial cell, and connected to the target neuron through another

path.

VII. CONCLUSIONS

The work described here provides another step towards the

evolution of a small adaptable, fault-tolerant, and intelligent

brain in silicon. A bio-inspired multi-cellular developmental
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process for growing spiking neural microcircuits in an FPGA,

based on a flexible and bio-plausible digital neuron model and

cortex structure was introduced. The developmental process

was implemented in software and the network simulation in

hardware. However, the proposed developmental algorithm

also lends itself to parallel architectures such as FPGAs and

GPUs. The statistical analysis of the networks developed from

randomly generated genomes showed that even with short

chromosomes and proteins, useful small-world networks (with

short characteristic paths and high clustering coefficients)

could be produced using this genotype-phenotype mapping.

It was also demonstrated that basic requirements for the

emergence of scalability, modularity and fault-tolerance have

been met in this system.

Future works include a fast implementation of the algorithm

on a GPU, evolving useful neural microcircuits to tackle

specific problems along with an evolvability study, comparison

with other methods, and demonstrating adaptability of this

system by evolving scalable, modular, robust and fault-tolerant

neural microcircuits in an FPGA.

REFERENCES

[1] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[2] W. Maass, “Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons,” in Advances in Neural
Information Processing Systems, M. C. Mozer, M. I. Jordan, and
T. Petsche, Eds., vol. 9. The MIT Press, 1997, p. 211.

[3] Maass, Natschlager, and Markram, “Real-time computing without stable
states: A new framework for neural computation based on perturbations,”
NEURCOMP: Neural Computation, vol. 14, pp. 2531–2560, 2002.

[4] A. N. Hampton and C. Adami, “Evolution of robust developmental
neural networks,” in Artificial Life IX: Proceedings of the Ninth Inter-
national Conference on the Simulation and Synthesis of Living Systems,
2004.

[5] D. Roggen, D. Federici, and D. Floreano, “Evolutionary morphogen-
esis for multi-cellular systems,” Genetic Programming and Evolvable
Machines, vol. 8, no. 1, pp. 61–96, 2007.

[6] D. Federici, “A regenerating spiking neural network,” Neural Networks,
vol. 18, no. 5-6, pp. 746–754, 2005.

[7] T. Gordon and P. Bentley, “Evolving hardware,” in Handbook of Nature-
Inspired And Innovative Computing. Springer, 2006, pp. 387–432.

[8] A. Upegui, C. A. Pena-Reyes, and E. Sanchez, “An FPGA platform for
on-line topology exploration of spiking neural networks,” Microproces-
sors and Microsystems, vol. 29, no. 5, pp. 211–223, Jun. 2005.

[9] A. Thompson, “An evolved circuit, intrinsic in silicon, entwined with
physics,” in Proc. 1st Int. Conf. on Evolvable Systems (ICES’96),
T. Higuchi, M. Iwata, and L. Weixin, Eds. Berlin: Springer-Verlag,
1997, pp. 390–405.

[10] A. Upegui, A. Perez-Uribe, Y. Thoma, and E. Sanchez, “Neural de-
velopment on the ubichip by means of dynamic routing mechanisms,”
Evolvable Systems: From Biology to Hardware: 8th International Con-
ference Proceedings, ICES 2008, LNCS 5216, vol. 5216, p. 392401,
2008.

[11] D. B. Chklovskii, B. W. Mel, and K. Svoboda, “Cortical rewiring and
information storage,” Nature, vol. 431, pp. 782–788, 2004.

[12] D. B. Chklovskii, T. Schikorski, and C. F. Stevens, “Wiring optimization
in cortical circuits,” Neuron, vol. 34, pp. 341–347, 2002.

[13] D. B. Chklovskii, “Synaptic connectivity and neuronal morphology: Two
sides of the same coin,” Neuron, vol. 43, pp. 609–617, 2004.

[14] H. Shayani, P. J. Bentley, and A. M. Tyrrell, “Hardware implementation
of a bio-plausible neuron model for evolution and growth of spiking neu-
ral networks on FPGA,” in AHS ’08: Proceedings of the 2008 NASA/ESA
Conference on Adaptive Hardware and Systems. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 236–243.

[15] H. Shayani, P. Bentley, and A. Tyrrell, “A cellular structure for online
routing of digital spiking neuron axons and dendrites on FPGAs,” in
Proceedings of the 8th international conference on Evolvable Systems:
From Biology to Hardware. Springer, 2008, pp. 273–284.

[16] S. Song, K. Miller, and L. Abbott, “Competitive hebbian learn-
ing through spike-timing-dependent synaptic plasticity,” nature neuro-
science, vol. 3, no. 9, pp. 919–926, 2000.
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